Affiliation:
1. Yunnan Observatories, Chinese Academy of Sciences , Kunming 650216 , China
2. Yunnan Key Laboratory of the Solar Physics and Space Science , Kunming 650216 , China
Abstract
ABSTRACT
Solar filament eruptions are often characterized by stepwise evolution due to the involvement of multiple mechanisms, such as magnetohydrodynamic instabilities and magnetic reconnection. In this article, we investigated a confined filament eruption with a distinct two-stage evolution by using the imaging and spectroscopic observations from the Interface Region Imaging Spectrograph and the Solar Dynamics Observatory. The eruption originated from a kinked filament thread that separated from an active region filament. In the first stage, the filament thread rose slowly and was obstructed due to flux pile-up in its front. This obstruction brought the filament thread into reconnection with a nearby loop-like structure, which enlarged the flux rope and changed its connectivity through the foot-point migration. The newly formed flux rope became more kink unstable and drove the rapid eruption in the second stage. It ascended into the upper atmosphere and initiated the reconnection with the overlying field. Finally, the flux rope was totally disintegrated, producing several solar jets along the overlying field. These observations demonstrate that the external reconnection between the flux rope and overlying field can destroy the flux rope, thus playing a crucial role in confining the solar eruptions.
Funder
European Space Agency
National Key Research and Development Program of China
Chinese Academy of Sciences
National Science Foundation of China
Youth Innovation Promotion Association
Publisher
Oxford University Press (OUP)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献