Multiphase gas in the circumgalactic medium: relative role of tcool/tff and density fluctuations

Author:

Pal Choudhury Prakriti12,Sharma Prateek3ORCID,Quataert Eliot4ORCID

Affiliation:

1. Department of Physics, Indian Institute of Science, Bangalore 560012, India

2. Max Planck Institute for Astrophysics, Garching 85748, Germany

3. Department of Physics and Joint Astronomy Program, Indian Institute of Science, Bangalore 560012, India

4. Astronomy Department, Theoretical Astrophysics Center, University of California Berkeley, Berkeley, CA 94720, USA

Abstract

ABSTRACT We perform a suite of simulations with realistic gravity and thermal balance in shells to quantify the role of the ratio of cooling time to the free-fall time (tcool/tff) and the amplitude of density perturbations (δρ/ρ) in the production of multiphase gas in the circumgalactic medium (CGM). Previous idealized simulations, focusing on small amplitude perturbations in the intracluster medium (ICM), found that cold gas can condense out of the hot ICM in global thermal balance when the background tcool/tff ≲ 10. Recent observations suggest the presence of cold gas even when the background profiles have somewhat large values of tcool/tff. This partly motivates a better understanding of additional factors such as large density perturbations that can enhance the propensity for cooling and condensation even when the background tcool/tff is high. Such large density contrasts can be seeded by galaxy wakes or dense cosmological filaments. From our simulations, we introduce a condensation curve in the (δρ/ρ) – min(tcool/tff) space, which defines the threshold for condensation of multiphase gas in the CGM. We show that this condensation curve corresponds to (tcool/tff)blob ≲ 10 applied to the overdense blob instead of the background for which tcool/tff can be higher. We also study the modification in the condensation curve by varying entropy stratification. Steeper (positive) entropy gradients shift the condensation curve to higher amplitudes of perturbations (i.e. make condensation difficult). A constant entropy core, applicable to the CGM in smaller haloes, shows condensation over a larger range of radii as compared to the steeper entropy profiles in the ICM.

Funder

Maritime and Port Authority of Singapore

Department of Science and Technology

Simons Foundation

National Sleep Foundation

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Cosmic ray feedback in galaxies and galaxy clusters;The Astronomy and Astrophysics Review;2023-12

2. Magnetic fields in multiphase turbulence: impact on dynamics and structure;Monthly Notices of the Royal Astronomical Society;2023-10-12

3. The impact of cosmic rays on thermal and hydrostatic stability in galactic haloes;Monthly Notices of the Royal Astronomical Society;2023-09-12

4. Cool and gusty, with a chance of rain: dynamics of multiphase CGM around massive galaxies in the Romulus simulations;Monthly Notices of the Royal Astronomical Society;2023-09-01

5. Multiphase condensation in cluster haloes: interplay of cooling, buoyancy, and mixing;Monthly Notices of the Royal Astronomical Society;2023-08-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3