Optimizing sparse RFI prediction using deep learning

Author:

Kerrigan Joshua1ORCID,Plante Paul La2,Kohn Saul2ORCID,Pober Jonathan C1,Aguirre James2,Abdurashidova Zara3,Alexander Paul4,Ali Zaki S3,Balfour Yanga5,Beardsley Adam P6,Bernardi Gianni578,Bowman Judd D6,Bradley Richard F9,Burba Jacob1,Carilli Chris L410,Cheng Carina3,DeBoer David R3,Dexter Matt3,Acedo Eloy de Lera4ORCID,Dillon Joshua S3ORCID,Estrada Julia11,Ewall-Wice Aaron12ORCID,Fagnoni Nicolas4,Fritz Randall5,Furlanetto Steve R13,Glendenning Brian10,Greig Bradley1415ORCID,Grobbelaar Jasper5,Gorthi Deepthi3,Halday Ziyaad5,Hazelton Bryna J1617,Hickish Jack3,Jacobs Daniel C6,Julius Austin5,Kern Nicholas S3,Kittiwisit Piyanat6ORCID,Kolopanis Matthew6,Lanman Adam1,Lekalake Telalo5,Liu Adrian18,MacMahon David3,Malan Lourence5,Malgas Cresshim5,Maree Matthys5,Martinot Zachary E2,Matsetela Eunice5,Mesinger Andrei19,Molewa Mathakane5,Morales Miguel F16,Mosiane Tshegofalang5,Neben Abraham R12,Parsons Aaron R3,Patra Nipanjana3,Pieterse Samantha5,Razavi-Ghods Nima4,Ringuette Jon16,Robnett James10,Rosie Kathryn5,Sims Peter1,Smith Craig5,Syce Angelo5,Thyagarajan Nithyanandan610ORCID,Williams Peter K G20ORCID,Zheng Haoxuan11

Affiliation:

1. Department of Physics, Brown University, Providence, Rhode Island, RI, USA

2. Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, USA

3. Department of Astronomy, University of California, Berkeley, CA, USA

4. Cavendish Astrophysics, University of Cambridge, Cambridge, UK

5. SKA SA, 3rd Floor, The Park, Park Road, Pinelands 7405, South Africa

6. School of Earth and Space Exploration, Arizona State University, Tempe, AZ, USA

7. Department of Physics and Electronics, Rhodes University, PO Box 94, Grahamstown 6140, South Africa

8. INAF – Istituto di Radioastronomia, via Gobetti 101, I-40129 Bologna, Italy

9. National Radio Astronomy Observatory, Charlottesville, VA, USA

10. National Radio Astronomy Observatory, Socorro, NM, USA

11. Department of Engineering, University of California, Berkeley, CA, USA

12. Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA

13. Department of Physics and Astronomy, University of California, Los Angeles, CA, USA

14. School of Physics, University of Melbourne, Parkville, VIC 3010, Australia

15. ARC Centre of Excellence for All-Sky Astrophysics in 3 Dimensions (ASTRO 3D), University of Melbourne, VIC 3010, Australia

16. Department of Physics, University of Washington, Seattle, WA, USA

17. eScience Institute, University of Washington, Seattle, WA, USA

18. Department of Physics and McGill Space Institute, McGill University, 3600 University Street, Montreal, QC H3A 2T8, Canada

19. Scuola Normale Superiore, I-56126 Pisa, PI, Italy

20. Harvard-Smithsonian Center for Astrophysics, Cambridge, MA, USA

Abstract

ABSTRACT Radio frequency interference (RFI) is an ever-present limiting factor among radio telescopes even in the most remote observing locations. When looking to retain the maximum amount of sensitivity and reduce contamination for Epoch of Reionization studies, the identification and removal of RFI is especially important. In addition to improved RFI identification, we must also take into account computational efficiency of the RFI-Identification algorithm as radio interferometer arrays such as the Hydrogen Epoch of Reionization Array (HERA) grow larger in number of receivers. To address this, we present a deep fully convolutional neural network (DFCN) that is comprehensive in its use of interferometric data, where both amplitude and phase information are used jointly for identifying RFI. We train the network using simulated HERA visibilities containing mock RFI, yielding a known ‘ground truth’ data set for evaluating the accuracy of various RFI algorithms. Evaluation of the DFCN model is performed on observations from the 67 dish build-out, HERA-67, and achieves a data throughput of 1.6 × 105 HERA time-ordered 1024 channelled visibilities per hour per GPU. We determine that relative to an amplitude only network including visibility phase adds important adjacent time–frequency context which increases discrimination between RFI and non-RFI. The inclusion of phase when predicting achieves a recall of 0.81, precision of 0.58, and F2 score of 0.75 as applied to our HERA-67 observations.

Funder

National Science Foundation

Gordon and Betty Moore Foundation

Department of Science and Technology

University of Pennsylvania

Australian Research Council

Royal Society

National Research Foundation

Istituto Nazionale di Astrofisica

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3