Surface structure of 45 Hercules: an otherwise unremarkable Ap star with a surprisingly weak magnetic field

Author:

Kochukhov O1ORCID,Gürsoytrak Mutlay H2,Amarsi A M1ORCID,Petit P3,Mutlay I4,Gürol B2ORCID

Affiliation:

1. Department of Physics and Astronomy, Uppsala University , Box 516, Uppsala SE-75120, Sweden

2. Department of Astronomy and Space Sciences, Faculty of Science , Ankara University, 06100 Ankara, Türkiye

3. Institut de Recherche en Astrophysique et Planétologie, Université de Toulouse, CNRS, CNES , 14 avenue Édouard Belin, F-31400 Toulouse, France

4. Department of Chemical Engineering, Faculty of Engineering, Ankara University , 06100, Ankara, Türkiye

Abstract

ABSTRACTThe origin of magnetic fields and their role in chemical spot formation on magnetic Ap stars is currently not understood. Here, we contribute to solving this problem with a detailed observational characterization of the surface structure of 45 Her, a weak-field Ap star. We find this object to be a long-period, single-lined spectroscopic binary and determine the binary orbit as well as fundamental and atmospheric parameters of the primary. We study magnetic field topology and chemical spot distribution of 45 Her with the help of the Zeeman Doppler imaging technique. Magnetic mapping reveals the stellar surface field to have a distorted dipolar topology with a surface-averaged field strength of 77 G and a dipolar component strength of 119 G – confirming it as one of the weakest well-characterized Ap-star fields known. Despite its feeble magnetic field, 45 Her shows surface chemical inhomogeneities with abundance contrasts of up to 6 dex. Of the four chemical elements studied, O concentrates at the magnetic equator, whereas Ti, Cr, and Fe avoid this region. Apart from this trend, the positions of Fe-peak element spots show no apparent correlation with the magnetic field geometry. No signs of surface differential rotation or temporal evolution of chemical spots on the time-scale of several years were detected. Our findings demonstrate that chemical spot formation does not require strong magnetic fields to proceed and that both the stellar structure and the global field itself remain stable for sub-100 G field strengths contrary to theoretical predictions.

Funder

Swedish Research Council

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3