Time-delay cosmographic forecasts with strong lensing and JWST stellar kinematics

Author:

Yıldırım Akın1ORCID,Suyu Sherry H123,Halkola Aleksi4

Affiliation:

1. Max Planck Institute for Astrophysics, Karl-Schwarzschild-Str. 1, D-85748 Garching, Germany

2. Physik-Department, Technische Universität München, James-Franck-Str. 1, D-85748 Garching, Germany

3. Institute of Astronomy and Astrophysics, Academia Sinica, 11F of ASMAB, No.1, Section 4, Roosevelt Road, Taipei 10617, Taiwan

4. Pyörrekuja 5 A, FI-04300 Tuusula, Finland

Abstract

ABSTRACT We present a joint strong lensing and stellar dynamical framework for future time-delay cosmography purposes. Based on a pixelated source reconstruction and the axisymmetric Jeans equations, we are capable of constraining cosmological distances and hence the current expansion rate of the Universe (H0) to the few per cent level per lens, when high signal-to-noise integral field unit (IFU) observations from the next generation of telescopes become available. For illustrating the power of this method, we mock up IFU stellar kinematic data of the prominent lens system RXJ1131−1231, given the specifications of the James Webb Space Telescope. Our analysis shows that the time-delay distance (DΔt) can be constrained with 3.1 per cent uncertainty at best, if future IFU stellar kinematics are included in the fit and if the set of candidate model parametrizations contains the true lens potential. These constraints would translate to a 3.2 per cent precision measurement on H0 in flat ΛCDM cosmology from the single lens RXJ1131−1231, and can be expected to yield an H0 measure with ≤2.0 per cent uncertainty, if similar gains in precision can be reached for two additional lens systems. Moreover, the angular diameter distance (Dd) to RXJ1131−1231 can be constrained with 2.4 per cent precision, providing two distance measurements from a single lens system, which is extremely powerful to further constrain the matter density (Ωm). The measurement accuracy of Dd, however, is highly sensitive to any systematics in the measurement of the stellar kinematics. For both distance measurements, we strongly advise to probe a large set of physically motivated lens potentials in the future, to minimize the systematic errors associated with the lens mass parametrization.

Funder

Max Planck Society

Government of Canada

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3