Cosmic-ray generated bubbles around their sources

Author:

Schroer B12ORCID,Pezzi O123ORCID,Caprioli D4ORCID,Haggerty C C5ORCID,Blasi P12ORCID

Affiliation:

1. Gran Sasso Science Institute , Viale F. Crispi 7, I-67100 L’Aquila, Italy

2. INFN/Laboratori Nazionali del Gran Sasso , Via G. Acitelli 22, I-67100, Assergi (AQ), Italy

3. Istituto per la Scienza e Tecnologia dei Plasmi, Consiglio Nazionale delle Ricerche , Via Amendola 122/D, I-70126 Bari, Italy

4. Department of Astronomy and Astrophysics, University of Chicago , 5640 S Ellis Ave, Chicago, IL 60637, USA

5. Institute for Astronomy, University of Hawaii , 2680 Woodlawn Drive, Honolulu, HI 96822, USA

Abstract

ABSTRACT Cosmic rays (CRs) are thought to escape their sources streaming along the local magnetic field lines. We show that this phenomenon generally leads to the excitation of both resonant and non-resonant streaming instabilities. The self-generated magnetic fluctuations induce particle diffusion in extended regions around the source, so that CRs build up a large pressure gradient. By means of two-dimensional (2D) and three-dimensional (3D) hybrid particle-in-cell simulations, we show that such a pressure gradient excavates a cavity around the source and leads to the formation of a cosmic ray dominated bubble, inside which diffusivity is strongly suppressed. Based on the trends extracted from self-consistent simulations, we estimate that, in the absence of severe damping of the self-generated magnetic fields, the bubble should keep expanding until pressure balance with the surrounding medium is reached, corresponding to a radius of ∼10–50 pc. The implications of the formation of these regions of low diffusivity for sources of Galactic CRs are discussed. Special care is devoted to estimating the self-generated diffusion coefficient and the grammage that CRs might accumulate in the bubbles before moving into the interstellar medium. Based on the results of 3D simulations, general considerations on the morphology of the γ-ray and synchrotron emission from these extended regions also are outlined.

Funder

University of Chicago

National Aeronautics and Space Administration

Ames Research Center

NASA

National Science Foundation

Agenzia Spaziale Italiana

Istituto Nazionale di Astrofisica

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3