The SAMI Galaxy Survey: a statistical approach to an optimal classification of stellar kinematics in galaxy surveys

Author:

van de Sande Jesse12ORCID,Vaughan Sam P12ORCID,Cortese Luca23ORCID,Scott Nicholas12ORCID,Bland-Hawthorn Joss12ORCID,Croom Scott M12ORCID,Lagos Claudia D P23ORCID,Brough Sarah24ORCID,Bryant Julia J125,Devriendt Julien6,Dubois Yohan7,D’Eugenio Francesco8ORCID,Foster Caroline12ORCID,Fraser-McKelvie Amelia23ORCID,Harborne Katherine E23,Lawrence Jon S9,Oh Sree210ORCID,Owers Matt S1112ORCID,Poci Adriano12ORCID,Remus Rhea-Silvia13,Richards Samuel N14ORCID,Schulze Felix1315,Sweet Sarah M216ORCID,Varidel Mathew R12ORCID,Welker Charlotte217

Affiliation:

1. Sydney Institute for Astronomy, School of Physics, A28, The University of Sydney, Sydney, NSW 2006, Australia

2. ARC Centre of Excellence for All Sky Astrophysics in 3 Dimensions (ASTRO 3D), Canberra, ACT 2601, Australia

3. International Centre for Radio Astronomy Research, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia

4. School of Physics, University of New South Wales, Kensington, NSW 2052, Australia

5. Australian Astronomical Optics, AAO-USydney, School of Physics, University of Sydney, Sydney, NSW 2006, Australia

6. University of Oxford, Astrophysics, Keble Road, Oxford OX1 3RH, UK

7. Institut d’Astrophysique de Paris, UMR 7095, CNRS, UPMC Univ. Paris VI, 98 bis boulevard Arago, F-75014 Paris, France

8. Sterrenkundig Observatorium, Universiteit Gent, Krijgslaan 281 S9, B-9000 Gent, Belgium

9. Australian Astronomical Optics, Faculty of Science and Engineering, Macquarie University, 105 Delhi Rd, North Ryde, NSW 2113, Australia

10. Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2611, Australia

11. Department of Physics and Astronomy, Macquarie University, Sydney, NSW 2109, Australia

12. Astronomy, Astrophysics and Astrophotonics Research Centre, Macquarie University, Sydney, NSW 2109, Australia

13. Universitäts-Sternwarte München, Scheinerstr. 1, D-81679 München, Germany

14. SOFIA Science Center, USRA, NASA Ames Research Center, Building N232, M/S 232-12, PO Box 1, Moffett Field, CA 94035-0001, USA

15. Max Planck Institute for Extraterrestrial Physics, Giessenbachstraße 1, D-85748 Garching, Germany

16. School of Mathematics and Physics, University of Queensland, Brisbane, QLD 4072, Australia

17. Department of Physics and Astronomy, The Johns Hopkins University, Baltimore, MD 21210, USA

Abstract

ABSTRACT Large galaxy samples from multiobject integral field spectroscopic (IFS) surveys now allow for a statistical analysis of the z ∼ 0 galaxy population using resolved kinematic measurements. However, the improvement in number statistics comes at a cost, with multiobject IFS survey more severely impacted by the effect of seeing and lower signal-to-noise ratio. We present an analysis of ∼1800 galaxies from the SAMI Galaxy Survey taking into account these effects. We investigate the spread and overlap in the kinematic distributions of the spin parameter proxy $\lambda _{R_{\rm {e}}}$ as a function of stellar mass and ellipticity εe. For SAMI data, the distributions of galaxies identified as regular and non-regular rotators with kinemetry show considerable overlap in the $\lambda _{R_{\rm {e}}}$–εe diagram. In contrast, visually classified galaxies (obvious and non-obvious rotators) are better separated in $\lambda _{R_{\rm {e}}}$ space, with less overlap of both distributions. Then, we use a Bayesian mixture model to analyse the observed $\lambda _{R_{\rm {e}}}$–log (M⋆/M⊙) distribution. By allowing the mixture probability to vary as a function of mass, we investigate whether the data are best fit with a single kinematic distribution or with two. Below log (M⋆/M⊙) ∼ 10.5, a single beta distribution is sufficient to fit the complete $\lambda _{R_{\rm {e}}}$ distribution, whereas a second beta distribution is required above log (M⋆/M⊙) ∼ 10.5 to account for a population of low-$\lambda _{R_{\rm {e}}}$ galaxies. While the Bayesian mixture model presents the cleanest separation of the two kinematic populations, we find the unique information provided by visual classification of galaxy kinematic maps should not be disregarded in future studies. Applied to mock-observations from different cosmological simulations, the mixture model also predicts bimodal $\lambda _{R_{\rm {e}}}$ distributions, albeit with different positions of the $\lambda _{R_{\rm {e}}}$ peaks. Our analysis validates the conclusions from previous, smaller IFS surveys, but also demonstrates the importance of using selection criteria for identifying different kinematic classes that are dictated by the quality and resolution of the observed or simulated data.

Funder

Australian Astronomical Observatory

ARC

Australian Research Council

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3