Spin-induced offset stream self-crossing shocks in tidal disruption events

Author:

Jankovič T1,Bonnerot C23,Gomboc A1

Affiliation:

1. Center for Astrophysics and Cosmology, School of Science, University of Nova Gorica , Vipavska 13, SI-5000 Nova Gorica, Slovenia

2. Niels Bohr International Academy, Niels Bohr Institute , Blegdamsvej 17, DK-2100 Copenhagen Ø Denmark

3. School of Physics and Astronomy & Institute for Gravitational Wave Astronomy, University of Birmingham , Birmingham B15 2TT, UK

Abstract

Abstract Tidal disruption events occur when a star is disrupted by a supermassive black hole, resulting in an elongated stream of gas that partly falls back to the pericenter. Due to apsidal precession, the returning stream may collide with itself, leading to a self-crossing shock that launches an outflow. If the black hole spins, this collision may additionally be affected by Lense-Thirring precession that can cause an offset between the two stream components. We study the impact of this effect on the outflow properties by carrying out local simulations of collisions between offset streams. As the offset increases, we find that the geometry of the outflow becomes less spherical and more collimated along the directions of the incoming streams, with less gas getting unbound by the interaction. However, even the most grazing collisions we consider significantly affect the trajectories of the colliding gas, likely promoting subsequent strong interactions near the black hole and rapid disc formation. We analytically compute the dependence of the offset to stream width ratio, finding that even slowly spinning black holes can cause both strong and grazing collisions. We estimate that the self-crossing shock luminosity is lower for an offset collision than an aligned one since radiation energy injected by the shock is significantly lower for more offset collisions. We find that the deviation from outflow sphericity may cause significant variations in the efficiency at which X-ray radiation from the disc is reprocessed to the optical band, depending on the viewing angle, and increase the degree of the observed polarization. These potentially observable features hold the promise of constraining the black hole spin from tidal disruption events.

Publisher

Oxford University Press (OUP)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3