CS-ROMER: a novel compressed sensing framework for Faraday depth reconstruction

Author:

Cárcamo Miguel123ORCID,Scaife Anna M M14ORCID,Alexander Emma L1ORCID,Leahy J Patrick1

Affiliation:

1. Jodrell Bank Centre for Astrophysics, Department of Physics and Astronomy, University of Manchester , Manchester M13 9PL, UK

2. University of Santiago of Chile (USACH), Faculty of Engineering, Computer Engineering Department , Santiago, 9160000, Chile

3. Center for Interdisciplinary Research in Astrophysics and Space Exploration (CIRAS), Universidad de Santiago de Chile , Santiago, 9160000, Chile

4. The Alan Turing Institute , Euston Road, London NW1 2DB, UK

Abstract

ABSTRACT The reconstruction of Faraday depth structure from incomplete spectral polarization radio measurements using the RM synthesis technique is an underconstrained problem requiring additional regularization. In this paper, we present cs-romer: a novel object-oriented compressed sensing framework to reconstruct Faraday depth signals from spectropolarization radio data. Unlike previous compressed sensing applications, this framework is designed to work directly with data that are irregularly sampled in wavelength-squared space and to incorporate multiple forms of compressed sensing regularization. We demonstrate the framework using simulated data for the VLA telescope under a variety of observing conditions, and we introduce a methodology for identifying the optimal basis function for reconstruction of these data, using an approach that can also be applied to data sets from other telescopes and over different frequency ranges. In this work, we show that the delta basis function provides optimal reconstruction for VLA L-band data and we use this basis with observations of the low-mass galaxy cluster Abell 1314 in order to reconstruct the Faraday depth of its constituent cluster galaxies. We use the cs-romer framework to de-rotate the Galactic Faraday depth contribution directly from the wavelength-squared data and to handle the spectral behaviour of different radio sources in a direction-dependent manner. The results of this analysis show that individual galaxies within Abell 1314 deviate from the behaviour expected for a Faraday-thin screen such as the intra-cluster medium and instead suggest that the Faraday rotation exhibited by these galaxies is dominated by their local environments.

Funder

ANID

AMS

ELA

UK Alan Turing Institute

Science and Technology Facilities Council

ESA

NASA

National Radio Astronomy Observatory

National Science Foundation

Associated Universities, Inc.

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Introduction to Faraday tomography and its future prospects;Publications of the Astronomical Society of Japan;2023-02-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3