The DRAKE mission: finding the frequency of life in the Cosmos

Author:

Sarkar Subhajit1ORCID

Affiliation:

1. School of Physics and Astronomy, Cardiff University , Cardiff CF24 3AA, UK

Abstract

ABSTRACT In the search for life in the Universe, exoplanets represent numerous natural experiments in planet formation, evolution, and the emergence of life. This raises the fascinating prospect of evaluating cosmic life on a statistical basis. One key statistic is the occurrence rate of life-bearing worlds, fL, the ‘frequency of life’ term in the famous Drake Equation. Measuring fL would give profound insight into how common life is and may help us to constrain origin-of-life theories. I propose fL as the goal for the DRAKE mission (Dedicated Research for Advancing Knowledge of Exobiology): a transit spectroscopy survey of M-dwarf habitable zone terrestrial planets. I investigate how the uncertainty on the observed value of fL scales with sample size. I determine that sampling error dominates over observational error and that the uncertainty is a function of the observed fL value. I show that even small sample sizes can provide significant constraints on fL, boding well for the transit spectroscopy approach. I perform a feasibility study of the DRAKE mission using a nominal instrument design and mission plan. Due to low observing efficiencies, DRAKE may need to be incorporated into a wider-ranging deep-space or lunar observatory. A 50-planet survey could constrain fL to ≤ 0.06 (at 95 per cent confidence) if the sample fL  = 0, or 0.03–0.2 if the sample fL  = 0.1. This can be achieved (on average) in 10 yr using a 17-m telescope with an unrestricted field-of-regard. DRAKE is a viable approach to attempting the first experimental measurement of fL.

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3