Formation of black holes in the pair-instability mass gap: hydrodynamical simulations of a head-on massive star collision

Author:

Ballone Alessandro123ORCID,Costa Guglielmo123ORCID,Mapelli Michela123ORCID,MacLeod Morgan4ORCID,Torniamenti Stefano123ORCID,Pacheco-Arias Juan Manuel1

Affiliation:

1. Physics and Astronomy Department Galileo Galilei, University of Padova , Vicolo dell’Osservatorio 3, I-35122 Padova, Italy

2. INAF - Osservatorio Astronomico di Padova , Vicolo dell’Osservatorio 5, I-35122 Padova, Italy

3. INFN - Padova , Via Marzolo 8, I-35131 Padova, Italy

4. Center for Astrophysics | Harvard ‣ Smithsonian 60 Garden Street , MS-16, Cambridge, MA 02138, USA

Abstract

ABSTRACT The detection of the binary black hole merger GW190521, with primary black hole mass $85^{+21}_{-14} {\rm M}_{\odot }$, proved the existence of black holes in the theoretically predicted pair-instability gap ($\sim 60-120 \, {\rm M}_{\odot }$) of their mass spectrum. Some recent studies suggest that such massive black holes could be produced by the collision of an evolved star with a carbon–oxygen core and a main sequence star. Such a post-coalescence star could end its life avoiding the pair-instability regime and with a direct collapse of its very massive envelope. It is still not clear, however, how the collision shapes the structure of the newly produced star and how much mass is actually lost in the impact. We investigated this issue by means of hydrodynamical simulations with the smoothed particle hydrodynamics code StarSmasher, finding that a head-on collision can remove up to 12 per cent of the initial mass of the colliding stars. This is a non-negligible percentage of the initial mass and could affect the further evolution of the stellar remnant, particularly in terms of the final mass of a possibly forming black hole. We also found that the main sequence star can plunge down to the outer boundary of the core of the primary, changing the inner chemical composition of the remnant. The collision expels the outer layers of the primary, leaving a remnant with an helium-enriched envelope (reaching He fractions of about 0.4 at the surface). These more complex abundance profiles can be directly used in stellar evolution simulations of the collision product.

Funder

European Research Council

US National Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3