Black hole–galaxy scaling relations in FIRE: the importance of black hole location and mergers

Author:

Çatmabacak Onur1ORCID,Feldmann Robert1ORCID,Anglés-Alcázar Daniel23,Faucher-Giguère Claude-André4ORCID,Hopkins Philip F5ORCID,Kereš Dušan6

Affiliation:

1. Institute for Computational Science, University of Zurich , Zurich CH-8057, Switzerland

2. Department of Physics, University of Connecticut , 196 Auditorium Road, U-3046, Storrs, CT 06269, USA

3. Center for Computational Astrophysics, Flatiron Institute , 162 Fifth Avenue, New York, NY 10010, USA

4. Department of Physics and Astronomy and CIERA, Northwestern University , 2145 Sheridan Road, Evanston, IL 60208, USA

5. TAPIR , Mailcode 350-17, California Institute of Technology, Pasadena, CA 91125, USA

6. Department of Physics, Center for Astrophysics and Space Sciences, University of California at San Diego , 9500 Gilman Drive, La Jolla, CA 92093, USA

Abstract

ABSTRACT The concurrent growth of supermassive black holes (SMBHs) and their host galaxies remains to be fully explored, especially at high redshift. While often understood as a consequence of self-regulation via AGN feedback, it can also be explained by alternative SMBH accretion models. Here, we expand on previous work by studying the growth of SMBHs with the help of a large suite of cosmological zoom-in simulations (MassiveFIRE) that are part of the Feedback in Realistic Environments (FIRE) project. The growth of SMBHs is modelled in post-processing with different black hole accretion models, placements, and merger treatments, and validated by comparing to on-the-fly calculations. Scaling relations predicted by the gravitational torque-driven accretion (GTDA) model agree with observations at low redshift without the need for AGN feedback, in contrast to models in which the accretion rate depends strongly on SMBH mass. At high redshift, we find deviations from the local scaling relations in line with previous theoretical results. In particular, SMBHs are undermassive, presumably due to stellar feedback, but start to grow efficiently once their host galaxies reach M* ∼ 1010M⊙. We analyse and explain these findings in the context of a simple analytic model. Finally, we show that the predicted scaling relations depend sensitively on the SMBH location and the efficiency of SMBH merging, particularly in low-mass systems. These findings highlight the relevance of understanding the evolution of SMBH-galaxy scaling relations to predict the rate of gravitational wave signals from SMBH mergers across cosmic history.

Funder

NSF

NASA

Northwestern University

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3