An improved dynamical Poisson equation solver for self-gravity

Author:

Maeda Ryunosuke1ORCID,Inoue Tsuyoshi2,Inutsuka Shu-ichiro3

Affiliation:

1. Astronomical Institute, Tohoku University , 6-3 Aramaki, Aoba, 980-8578 Sendai , Japan

2. Department of Physics, Konan University , Okamoto 8-9-1, 658-8501 Kobe , Japan

3. Department of Physics, Graduate School of Science, Nagoya University , Furo-cho, Chikusa-ku, 464-8602 Nagoya , Japan

Abstract

ABSTRACT Since self-gravity is crucial in the structure formation of the Universe, many hydrodynamics simulations with the effect of self-gravity have been conducted. The multigrid method is widely used as a solver for the Poisson equation of the self-gravity; however, the parallelization efficiency of the multigrid method becomes worse when we use a massively parallel computer, and it becomes inefficient with more than 104 cores, even for highly tuned codes. To perform large-scale parallel simulations (>104 cores), developing a new gravity solver with good parallelization efficiency is beneficial. In this article, we develop a new self-gravity solver using the telegraph equation with a damping coefficient, κ. Parallelization is much easier than the case of the elliptic Poisson equation since the telegraph equation is a hyperbolic partial differential equation. We analyse convergence tests of our telegraph equations solver and determine that the best non-dimensional damping coefficient of the telegraph equations is $\tilde{\kappa } \simeq 2.5$. We also show that our method can maintain high parallelization efficiency even for massively parallel computations due to the hyperbolic nature of the telegraphic equation by weak-scaling tests. If the time-step of the calculation is determined by heating/cooling or chemical reactions, rather than the Courant–Friedrichs–Lewy (CFL) condition, our method may provide the method for calculating self-gravity faster than other previously known methods such as the fast Fourier transform and multigrid iteration solvers because gravitational phase velocity determined by the CFL condition using these time-scales is much larger than the fluid velocity plus sound speed.

Funder

National Astronomical Observatory of Japan

Ministry of Education, Culture, Sports, Science and Technology

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3