Frequency of the dark matter subhalo collisions and bifurcation sequence arising formation of dwarf galaxies

Author:

Otaki Koki1ORCID,Mori Masao2ORCID

Affiliation:

1. Graduate School of Pure and Applied Sciences, University of Tsukuba , Tennodai 1-1-1, Tsukuba, Ibaraki 305-8577 , Japan

2. Center for Computational Sciences, University of Tsukuba , Tennodai 1-1-1, Tsukuba, Ibaraki 305-8577 , Japan

Abstract

ABSTRACT The cold dark matter model predicts galaxies have 100 times more dark matter mass than stars. Nevertheless, recent observations report the existence of dark-matter-deficient galaxies with less dark matter than expected. To solve this problem, we investigate the physical processes of galaxy formation in head-on collisions between gas-containing dark matter subhaloes (DMSHs). Analytical estimation of the collision frequency between DMSHs associated with a massive host halo indicates that collisions frequently occur within one-tenth of the virial radius of the host halo, with a collision time-scale of about $10\, \mathrm{Myr}$, and the most frequent relative velocity increases with increasing radius. Using analytical models and numerical simulations, we show the bifurcation channel of the formation of dark-matter-dominated and dark-matter-deficient galaxies. In the case of low-velocity collisions, a dark-matter-dominated galaxy is formed by the merging of two DMSHs. In the case of moderate-velocity collisions, the two DMSHs penetrate each other. However, the gas medium collides, and star formation begins as the gas density increases, forming a dwarf galaxy without dark matter at the collision surface. In the case of high-velocity collisions, shock-breakout occurs due to the shock waves generated at the collision surface reaching the gas surface, and no galaxy forms. For example, the simulation demonstrates that a pair of DMSHs with a mass of $10^9\, \mathrm{M_\odot }$ containing gas of 0.1 solar metallicity forms a dark-matter-deficient galaxy with a stellar mass of $10^7\, \mathrm{M_\odot }$ for a relative velocity of $200\, \mathrm{km\, s^{-1}}$.

Funder

JSPS

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3