Gaussian process foreground subtraction and power spectrum estimation for 21 cm cosmology

Author:

Kern Nicholas S1ORCID,Liu Adrian2ORCID

Affiliation:

1. Department of Physics and Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA

2. Department of Physics and McGill Space Institute, McGill University, 3600 University Street, Montreal, QC H3A 2T8, Canada

Abstract

ABSTRACT One of the primary challenges in enabling the scientific potential of 21 cm intensity mapping at the epoch of reionization (EoR) is the separation of astrophysical foreground contamination. Recent works have claimed that Gaussian process regression (GPR) can robustly perform this separation, particularly at low Fourier k wavenumbers where the EoR signal reaches its peak signal-to-noise ratio. We revisit this topic by casting GPR foreground subtraction (GPR-FS) into the quadratic estimator formalism, thereby putting its statistical properties on stronger theoretical footing. We find that GPR-FS can distort the window functions at these low k modes, which, without proper decorrelation, make it difficult to probe the EoR power spectrum. Incidentally, we also show that GPR-FS is in fact closely related to the widely studied inverse covariance weighting of the optimal quadratic estimator. As a case study, we look at recent power spectrum upper limits from the Low-Frequency Array (LOFAR) that utilized GPR-FS. We pay close attention to their normalization scheme, showing that it is particularly sensitive to signal loss when the EoR covariance is misestimated. This has possible ramifications for recent astrophysical interpretations of the LOFAR limits, because many of the EoR models ruled out do not fall within the bounds of the covariance models explored by LOFAR. Being more robust to this bias, we conclude that the quadratic estimator is a more natural framework for implementing GPR-FS and computing the 21 cm power spectrum.

Funder

Natural Sciences and Engineering Research Council of Canada

Canadian Institute for Advanced Research

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3