Constraints on the spectral signatures of superconducting cosmic strings

Author:

Cyr Bryce1ORCID,Chluba Jens1ORCID,Acharya Sandeep Kumar1

Affiliation:

1. Jodrell Bank Centre for Astrophysics, School of Physics and Astronomy, The University of Manchester , Manchester M13 9PL , UK

Abstract

ABSTRACT If they exist, networks of superconducting cosmic strings are capable of injecting copious amounts of electromagnetic energy into the background over a broad range of frequencies. We study this injection both analytically, as well as numerically using the thermalization code CosmoTherm. With our refined analytic formalism, we update constraints from CMB spectral distortions by following the injection of entropy, as well as energy, on the amplitude of the μ-distortion, leading to a significant improvement in those limits. Furthermore, we utilize the full shape of the distorted spectrum from CosmoTherm to include constraints from non-μ, non-y type distortions. Additionally, we use the outputs for the ionization history and global 21-cm signal to derive and update constraints on string model parameters using measurements from other data sets. Analysis of CMB anisotropies provides the most stringent constraints, though with a slightly modified shape and strength when compared to previous results. Modifications of the reionization history provide new bounds in the high current domain, and we also find that the observations of the low-frequency radio background probe a small region of parameter space not explored by other data sets. We also analyse global 21-cm constraints, and find that the inclusion of soft photon heating plays a crucial role, essentially removing any constraints in the considered parameter domain. Spectral distortion measurements from COBE/FIRAS are covered by other constraints, but our conservative forecast shows that a PIXIE-type satellite would probe important unexplored regions of parameter space.

Funder

ERC

University of Manchester

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3