Magnetic topologies of two weak-line T Tauri stars TAP 4 and TAP 40

Author:

Xiang Yue12ORCID,Gu Shenghong123,Donati J-F4ORCID,Hussain G A J5,Cameron A Collier6ORCID,collaboration the MaT Y S S E

Affiliation:

1. Yunnan Observatories, Chinese Academy of Sciences , Kunming 650216, China

2. Key Laboratory for the Structure and Evolution of Celestial Objects, Chinese Academy of Sciences , Kunming 650216, China

3. School of Astronomy and Space Science, University of Chinese Academy of Sciences , Beijing 101408, China

4. IRAP, Université de Toulouse , CNRS, UPS, CNES, F-31400 Toulouse, France

5. Science Division, European Space Research and Technology Centre (ESA/ESTEC) , Keplerlaan 1, NL-2201 AZ Noordwijk, the Netherlands

6. School of Physics and Astronomy, University of St Andrews , Fife KY16 9SS, UK

Abstract

ABSTRACT We present a Zeeman–Doppler imaging study of two weak-line T Tauri stars TAP 4 and TAP 40, based on the high-resolution spectropolarimetric observations with ESPaDOnS at the Canada–France–Hawaii Telescope in November 2013, in the framework of the Magnetic Topologies of Young Stars and Survival of close-in giant Exoplanets large programme. We apply two Zeeman–Doppler imaging codes to the Stokes I and V profiles to reconstruct their brightness and large-scale magnetic field images. The results given by the two imaging codes are in good agreement with each other. TAP 4 shows a large polar cool spot and several intermediate-latitude warm spots on its surface, whereas TAP 40 exhibits very weak variations in its Stokes I profiles, suggesting a mostly unspotted photosphere. We detect Zeeman signatures in the Stokes V profiles of both stars. The reconstructed magnetic maps reveal dominantly toroidal fields, which enclose about 60 per cent of the total magnetic energy for both TAP 4 and TAP 40. Both stars show prominent circular ring features of the azimuthal magnetic field. We derive a solar-like surface differential rotation on TAP 4 from the tomographic modelling. The brightness image of TAP 4 is used to predict the radial velocity (RV) jitters induced by its activity. After filtering out the activity jitter, the rms of its RVs is reduced from 1.7 to 0.2 km s−1, but we do not detect any periodic signals in the filtered RVs of TAP 4, implying that it is unlikely to host a close-in exoplanet more massive than ∼3.5MJup at 0.1 au.

Funder

National Natural Science Foundation of China

European Research Council

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3