The structure of hydrodynamic γ-ray burst jets

Author:

Gottlieb Ore1ORCID,Nakar Ehud1ORCID,Bromberg Omer1

Affiliation:

1. School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978, Israel

Abstract

ABSTRACT After being launched, gamma-ray burst (GRB) jets propagate through dense media prior to their breakout. The jet-medium interaction results in the formation of a complex structured outflow, often referred to as a ‘structured jet’. The underlying physics of the jet-medium interaction that sets the post-breakout jet morphology has never been explored systematically. Here, we use a suite of 3D simulations to follow the evolution of hydrodynamic long and short gamma-ray bursts (lGRBs and sGRBs) jets after breakout to study the post-breakout structure induced by the interaction. Our simulations feature Rayleigh–Taylor fingers that grow from the cocoon into the jet, mix cocoon with jet material and destabilize the jet. The mixing gives rise to a previously unidentified region sheathing the jet from the cocoon, which we denote the jet–cocoon interface (JCI). lGRBs undergo strong mixing, resulting in most of the jet energy to drift into the JCI, while in sGRBs weaker mixing is possible, leading to a comparable amount of energy in the two components. Remarkably, the jet structure (jet-core plus JCI) can be characterized by simple universal angular power-law distributions, with power-law indices that depend solely on the mixing level. This result supports the commonly used power-law angular distribution, and disfavours Gaussian jets. At larger angles, where the cocoon dominates, the structure is more complex. The mixing shapes the prompt emission light curve and implies that typical lGRB afterglows are different from those of sGRBs. Our predictions can be used to infer jet characteristics from prompt and afterglow observations.

Funder

European Research Council

Israel Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 81 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3