Distinguishing magnetized disc winds from turbulent viscosity through substructure morphology in planet-forming discs

Author:

Wu YinhaoORCID,Chen Yi-XianORCID,Jiang Haochang,Dong Ruobing,Macías Enrique1ORCID,Lin Min-KaiORCID,Rosotti Giovanni P23ORCID,Elbakyan Vardan24

Affiliation:

1. European Southern Observatory , Karl-Schwarzschild-Str 2, D-85748 Garching, Germany

2. School of Physics and Astronomy, University of Leicester , Leicester LE1 7RH, UK

3. Dipartimento di Fisica ‘Aldo Pontremoli’, Universita degli Studi di Milano , via Celoria 16, Milano I-20133, Italy

4. Research Institute of Physics, Southern Federal University , Rostov-on-Don 344090, Russia

Abstract

ABSTRACT The traditional paradigm of viscosity-dominated evolution of protoplanetary discs has been recently challenged by existence of magnetized disc winds. However, distinguishing wind-driven and turbulence-driven accretion through observations has been difficult. In this study, we present a novel approach to identifying their separate contribution to angular momentum transport by studying the gap and ring morphology of planet-forming discs in the ALMA continuum. We model the gap-opening process of planets in discs with both viscous evolution and wind-driven accretion by 2D multifluid hydrodynamical simulations. Our results show that gap-opening planets in wind-driven accreting discs generate characteristic dust substructures that differ from those in purely viscous discs. Specifically, we demonstrate that discs where wind-driven accretion dominates the production of substructures exhibit significant asymmetries. Based on the diverse outputs of mock images in the ALMA continuum, we roughly divide the planet-induced features into four regimes (moderate-viscosity dominated, moderate-wind dominated, strong-wind dominated, and inviscid). The classification of these regimes sets up a potential method to constrain the strength of magnetized disc wind and viscosity based on the observed gap and ring morphology. We discuss the asymmetry feature in our mock images and its potential manifestation in ALMA observations.

Funder

STFC

HPC

National Science and Technology Council

Ministry of Science and Higher Education of the Russian Federation

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Analytical solutions for the evolution of MHD wind-driven accretion discs;Monthly Notices of the Royal Astronomical Society;2024-01-22

2. Using planet migration and dust drift to weigh protoplanetary discs;Monthly Notices of the Royal Astronomical Society;2023-06-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3