Affiliation:
1. Department of Astronomy, University of Cape Town, Private Bag X3, Rondebosch 7701, South Africa
2. Department of Physics and Astronomy, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa
3. Inter-University Institute for Data Intensive Astronomy, Private Bag X3, Rondebosch 7701, South Africa
4. INAF – Istituto di Radioastronomia, via Gobetti 101, I-40129 Bologna, Italy
5. National Centre for Radio Astrophysics, Tata Institute of Fundamental Research, Pune 411007, India
Abstract
ABSTRACT
We study the cosmic evolution of radio sources out to z ≃ 1.5 using a GMRT 610 MHz survey covering ∼1.86 deg2 of the ELAIS N1 field with a minimum/median rms noise 7.1/19.5 μJy beam−1 and an angular resolution of 6 arcsec. We classify sources as star forming galaxies (SFGs), radio-quiet (RQ) and radio-loud (RL) Active Galactic Nuclei (AGNs) using a combination of multiwavelength diagnostics and find evidence in support of the radio emission in SFGs and RQ AGN arising from star formation, rather than AGN-related processes. At high luminosities, however, both SFGs and RQ AGN display a radio excess when comparing radio and infrared star formation rates. The vast majority of our sample lie along the $\rm {SFR - \mathit{ M}_{\star }}$ ‘main sequence’ at all redshifts when using infrared star formation rates. We derive the 610 MHz radio luminosity function for the total AGN population, constraining its evolution via continuous models of pure density and pure luminosity evolution with $\rm {\Phi ^{\star }\, \propto \, (\, 1+\, \mathit{ z})^{(2.25\pm 0.38)-(0.63\pm 0.35)z}}$ and $\rm {\mathit{ L}_{610\, MHz}\, \propto \, (\, 1+\, \mathit{ z})^{(3.45\pm 0.53)-(0.55\pm 0.29)\mathit{ z}}}$, respectively. For our RQ and RL AGN, we find a fairly mild evolution with redshift best fitted by pure luminosity evolution with $\rm {\mathit{ L}_{610\, MHz}\, \propto \, (\, 1+\, \mathit{ z})^{(2.81\pm 0.43)-(0.57\pm 0.30)\mathit{ z}}}$ for RQ AGN and $\rm {\mathit{ L}_{610\, MHz}\, \propto \, (\, 1+\, \mathit{ z})^{(3.58\pm 0.54)-(0.56\pm 0.29)\mathit{ z}}}$ for RL AGN. The 610 MHz radio AGN population thus comprises two differently evolving populations whose radio emission is mostly SF-driven or AGN-driven, respectively.
Funder
University of Cape Town
Department of Atomic Energy, Government of India
Ministero degli Affari Esteri e della Cooperazione Internazionale
Publisher
Oxford University Press (OUP)
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献