Spectropolarimetric analysis of prompt emission of GRB 160325A: jet with evolving environment of internal shocks

Author:

Sharma Vidushi1ORCID,Iyyani Shabnam1,Bhattacharya Dipankar1,Chattopadhyay Tanmoy23,Vadawale Santosh V4,Bhalerao Varun B5

Affiliation:

1. Inter-University Center for Astronomy and Astrophysics, Pune, Maharashtra 411007, India

2. Department of Physics, Stanford University, 382 Via Pueblo Mall, Stanford, CA 94305, USA

3. Kavli Institute of Astrophysics and Cosmology, 452 Lomita Mall, Stanford, CA 94305, USA

4. Physical Research Laboratory, Ahmedabad, Gujarat 380009, India

5. Indian Institute of Technology Bombay, Mumbai 400 076, India

Abstract

ABSTRACT GRB 160325A is the only bright burst detected by AstroSat CZT Imager in its primary field of view to date. In this work, we present the spectral and polarimetric analysis of the prompt emission of the burst using AstroSat, Fermi, and Niel Gehrels Swift observations. The prompt emission consists of two distinct emission episodes separated by a few seconds of quiescent/ mild activity period. The first emission episode shows a thermal component as well as a low polarization fraction of $PF \lt 37\, {{\ \rm per\ cent}}$ at $1.5\, \sigma$ confidence level. On the other hand, the second emission episode shows a non-thermal spectrum and is found to be highly polarized with $PF \gt 43\, {{\ \rm per\ cent}}$ at 1.5σ confidence level. We also study the afterglow properties of the jet using Swift/XRT data. The observed jet break suggests that the jet is pointed towards the observer and has an opening angle of 1.2° for an assumed redshift, z = 2. With composite modelling of polarization, spectrum of the prompt emission, and the afterglow, we infer that the first episode of emission originates from the photosphere with localized dissipation happening below it, and the second from the optically thin region above the photosphere. The photospheric emission is generated mainly by inverse Compton scattering, whereas the emission in the optically thin region is produced by the synchrotron process. The low radiation efficiency of the burst suggests that the outflow remains baryonic dominated throughout the burst duration with only a subdominant Poynting flux component, and the kinetic energy of the jet is likely dissipated via internal shocks which evolves from an optically thick to optically thin environment within the jet.

Funder

Indian Space Research Organisation

Tata Institute of Fundamental Research

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3