A deep learning model to emulate simulations of cosmic reionization

Author:

Chardin Jonathan1,Uhlrich Grégoire12,Aubert Dominique1,Deparis Nicolas1,Gillet Nicolas3ORCID,Ocvirk Pierre1,Lewis Joseph1

Affiliation:

1. Observatoire Astronomique de Strasbourg, Université de Strasbourg, CNRS UMR 7550, 11 rue de l’ Université, F-67000 Strasbourg, France

2. IPNL, Université de Lyon, Université Lyon 1, CNRS/IN2P3, 4 rue E. Fermi, F-69622 Villeurbanne cedex, France

3. Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy

Abstract

ABSTRACT We present a deep learning model trained to emulate the radiative transfer during the epoch of cosmological reionization. CRADLE (Cosmological Reionization And Deep LEarning) is an auto-encoder convolutional neural network that uses 2D maps of the star number density and the gas density field at z = 6 as inputs and that predicts 3D maps of the times of reionization treion as outputs. These predicted single fields are sufficient to describe the global reionization history of the intergalactic medium in a given simulation. We trained the model on a given simulation and tested the predictions on another simulation with the same parameters but with different initial conditions. The model is successful at predicting treion maps that are in good agreement with the test simulation. We used the power spectrum of the treion field as an indicator to validate our model. We show that the network predicts large scales almost perfectly but is somewhat less accurate at smaller scales. While the current model is already well suited to get average estimates about the reionization history, we expect it can be further improved with larger samples for the training, better data pre-processing and finer tuning of hyper-parameters. Emulators of this kind could be systematically used to rapidly obtain the evolving H ii regions associated with hydro-only simulations and could be seen as precursors of fully emulated physics solvers for future generations of simulations.

Funder

Centre Informatique National de l'Enseignement Supérieur

Grand Equipement National de Calcul Intensif

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3