Affiliation:
1. Department of Space Sciences and Technologies, Faculty of Sciences, Akdeniz University , Antalya 07058, Turkiye
Abstract
ABSTRACT
Main-sequence bolometric corrections (BC) and a standard BC–Teff relation are produced for TESS wavelengths using published physical parameters and light ratios from SED models of 209 detached double-lined eclipsing binaries. This and previous five-band (Johnson B, V, Gaia G, GBP, GRP) standard BC–Teff relations are tested by recovering luminosity (L) of the most accurate 341 single host stars (281 MS, 40 subgiants, 19 giants, and one pre-main-sequence). Recovered L of photometry are compared to L from published R and Teff. A very high correlation (R2 = 0.9983) is achieved for this mixed sample. Error histograms of recovered and calculated L show peaks at ∼2 and ∼4 per cent, respectively. The recovered L and the published Teff were then used in $L = 4\pi R^2 \sigma T^4_{\rm eff}$ to predict the standard R of the host stars. Comparison between the predicted and published R of all luminosity classes are found successful with a negligible offset associated with the giants and subgiants. The peak of the predicted R errors is found at 2 per cent, which is equivalent to the peak of the published R errors. Thus, a main-sequence BC–Teff relation could be used in predicting both L and R of a single star at any luminosity class, but this does not mean BC–Teff relations of all luminosity classes are the same because luminosity information could be more constrained by star’s apparent magnitude ξ than its BC since mBol = ξ + BCξ.
Publisher
Oxford University Press (OUP)
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献