Affiliation:
1. School of Physics, University of Melbourne, Parkville, VIC 3010, Australia
2. Australian Research Council Centre of Excellence for Gravitational Wave Discovery (OzGrav), University of Melbourne, Parkville, VIC 3010, Australia
Abstract
ABSTRACT
A microphysics-agnostic meta-model of rotational glitches in rotation-powered pulsars is developed, wherein the globally averaged internal stress accumulates as a Brownian process between glitches, and a glitch is triggered once a critical threshold is surmounted. Precise, falsifiable predictions are made regarding long-term event statistics in individual pulsars. For example, the Spearman cross-correlation coefficient between the size of a glitch and the waiting time until the next glitch should exceed 0.25 in all pulsars. Among the six pulsars with the most recorded glitches, PSR J0537−6910 and PSR J0835−4510 are consistent with the predictions of the meta-model, while PSR J1740−3015 and PSR J0631+1036 are not. PSR J0534+2200 and PSR J1341−6220 are only consistent with the meta-model, if there exists an undetected population of small glitches with small waiting times, which we do not resolve. The results are compared with a state-dependent Poisson process, another microphysics-agnostic meta-model in the literature. The results are also applied briefly to recent pulse-to-pulse observations of PSRJ0835−4510, which appear to reveal evidence for a negative fluctuation in rotation frequency just prior to the 2016 glitch.
Funder
Australian Research Council
ARC
Publisher
Oxford University Press (OUP)
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献