Hamilton’s Object – a clumpy galaxy straddling the gravitational caustic of a galaxy cluster: constraints on dark matter clumping

Author:

Griffiths Richard E12ORCID,Rudisel Mitchell1,Wagner Jenny3ORCID,Hamilton Timothy4ORCID,Huang Po-Chieh15,Villforth Carolin6ORCID

Affiliation:

1. Department of Physics & Astronomy, University of Hawaii at Hilo, 200 W. Kawili St, Hilo, HI 96720, USA

2. Department of Physics, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, PA 15213, USA

3. Zentrum für Astronomie, Astronomisches Rechen-Institut, Universität Heidelberg, Mönchhofstr. 12–14, D-69120 Heidelberg, Germany

4. Department of Natural Sciences, Shawnee State University, 940 Second Street, Portsmouth, OH 45662, USA

5. Dept. of Physics, Chung Yuan Christian University, 200 Chung Pei Road, Chung Li District, Taoyuan City, Taiwan 32023, R.O.C

6. Department of Physics, University of Bath, Claverton Down, Bath BA2 7AY, UK

Abstract

ABSTRACT We report the discovery of a ‘folded’ gravitationally lensed image, ‘Hamilton’s Object’, found in a HST image of the field near the active galactic nucleus SDSS J223010.47-081017.8 (which has redshift 0.62). The lensed images are sourced by a galaxy at a spectroscopic redshift of 0.8200 ± 0.0005 and form a fold configuration on a caustic caused by a foreground galaxy cluster at a photometric redshift of 0.526 ± 0.018 seen in the corresponding Pan-STARRS PS1 image and marginally detected as a faint ROSAT All-Sky Survey X-ray source. The lensed images exhibit properties similar to those of other ‘folds’ where the source galaxy falls very close to or straddles the caustic of a galaxy cluster. The folded images are stretched in a direction roughly orthogonal to the critical curve, but the configuration is that of a tangential cusp. Guided by morphological features, published simulations and similar ‘fold’ observations in the literature, we identify a third or ‘counter’-image, confirmed by spectroscopy. Because the fold-configuration shows highly distinctive surface brightness features, follow-up observations of microlensing or detailed investigations of the individual surface brightness features at higher resolution can further shed light on kpc-scale dark matter properties. We determine the local lens properties at the positions of the multiple images according to the observation-based lens reconstruction of Wagner. The analysis is in accordance with a mass density which hardly varies on an arcsecond scale (6 kpc) over the areas covered by the multiple images.

Funder

Space Telescope Science Institute

California Institute of Technology

University of California

National Aeronautics and Space Administration

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3