Loss cone shielding

Author:

Teboul Odelia1ORCID,Stone Nicholas C1ORCID,Ostriker Jeremiah P2

Affiliation:

1. Racah Institute of Physics, The Hebrew University , Jerusalem 91904 , Israel

2. Department of Astronomy, Columbia University , 550 West 120th Str, New York, NY 10027 , USA

Abstract

ABSTRACT A star wandering close enough to a massive black hole can be ripped apart by the tidal forces of the black hole. The advent of wide-field surveys at many wavelengths has quickly increased the number of tidal disruption events (TDEs) observed, and has revealed that (i) observed TDE rates are lower than theoretical predictions and (ii) E+A galaxies are significantly overrepresented. This overrepresentation further worsens the tension between observed and theoretically predicted TDEs for non-E+A galaxies. Classical loss cone theory focuses on the cumulative effect of many weak scatterings. However, a strong scattering can remove a star from the distribution before it can get tidally disrupted. Most stars undergoing TDEs come from within the radius of influence, the densest environments of the Universe. In such environments, close encounters rare elsewhere become non-negligible. We revise the standard loss cone theory to take into account classical two-body interactions as well as strong scattering, collisions, tidal captures, and study under which conditions close encounters can shield the loss cone. We (i) analytically derive the impact of strong scattering and other close encounters, (ii) compute time-dependent loss cone dynamics including both weak and strong encounters, and (iii) derive analytical solutions to the Fokker–Planck equation with strong scattering. We find that (i) TDE rates can be reduced to up to an order of magnitude and (ii) strong shielding preferentially reduces deeply plunging stars. We also show that stellar overdensities, one possible explanation for the E + A preference, can fail to increase TDE rates when taking into account strong scattering.

Funder

Ministry of Science and Technology, Israel

Israel Science Foundation

United States-Israel Binational Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3