The radiative efficiency of neutron stars at low-level accretion

Author:

Qiao Erlin12,Liu B F12

Affiliation:

1. Key Laboratory of Space Astronomy and Technology, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100101, China

2. School of Astronomy and Space Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China

Abstract

ABSTRACT When neutron star low-mass X-ray binaries (NS-LMXBs) are in the low-level accretion regime (i.e. $L_{\rm X}\lesssim 10^{36}\ \rm erg\ s^{-1}$), the accretion flow in the inner region around the NS is expected to exist in the form of the hot accretion flow, e.g. the advection-dominated accretion flow (ADAF) as that in black hole X-ray binaries. Following our previous studies in Qiao & Liu (2020a, b) on the ADAF accretion around NSs, in this paper, we investigate the radiative efficiency of NSs with an ADAF accretion in detail, showing that the radiative efficiency of NSs with an ADAF accretion is much lower than that of $\epsilon \sim {\dot{M} GM\over R_{*}}/{\dot{M} c^2}\sim 0.2$ despite the existence of the hard surface. As a result, given an X-ray luminosity LX (e.g. between 0.5 and 10 keV), $\dot{M}$ calculated by $\dot{M}=L_{\rm X}{R_{*}\over {GM}}$ is lower than the real $\dot{M}$ calculated within the framework of the ADAF accretion. The real $\dot{M}$ can be more than two orders of magnitude higher than that calculated by $\dot{M}=L_{\rm X}{R_{*}\over {GM}}$ with appropriate model parameters. Finally, we discuss that if applicable, the model of ADAF accretion around a NS can be applied to explain the observed millisecond X-ray pulsation in some NS-LMXBs (such as PSR J1023+0038, XSS J12270−4859, and IGR J17379−3747) at a lower X-ray luminosity of a few times of $10^{33}\ \rm erg\ s^{-1}$, since at this X-ray luminosity the calculated $\dot{M}$ with the model of ADAF accretion can be high enough to drive a fraction of the matter in the accretion flow to be channelled on to the surface of the NS forming the X-ray pulsation.

Funder

National Natural Science Foundation of China

Chinese Academy of Sciences

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3