Progenitor mass distribution for 22 historic core-collapse supernovae

Author:

Díaz-Rodríguez Mariangelly1ORCID,Murphy Jeremiah W1,Williams Benjamin F2,Dalcanton Julianne J2,Dolphin Andrew E34

Affiliation:

1. Department of Physics, Florida State University, Tallahassee, FL 32304, USA

2. Department of Astronomy, Box 351580, University of Washington, Seattle, WA 98195, USA

3. Steward Observatory, University of Arizona, Tucson, AZ 85719, USA

4. Raytheon, Tucson, AZ 85734, USA

Abstract

ABSTRACT We infer the progenitor mass distribution for 22 historic core-collapse supernovae (CCSNe) using a Bayesian hierarchical model. For this inference, we use the local star formation histories to estimate the age for each supernova (SN). These star formation histories often show multiple bursts of star formation; our model assumes that one burst is associated with the SN progenitor and the others are random bursts of star formation. The primary inference is the progenitor age distribution. Due to the limited number of historic SNe and highly uncertain star formation at young ages, we restrict our inference to the slope of the age distribution and the maximum age for CCSNe. Using single-star evolutionary models, we transform the progenitor age distribution into a progenitor mass distribution. Under these assumptions, the minimum mass for CCSNe is $M_\textrm {min}~=~8.60^{+0.37}_{-0.41}\ \mathrm M_\odot$ and the slope of the progenitor mass distribution is $\alpha = -2.61^{+1.05}_{-1.18}$. The power-law slope for the progenitor mass distribution is consistent with the standard Salpeter initial mass function (α = −2.35). These values are consistent with previous estimates using precursor imaging and the age-dating technique, further confirming that using stellar populations around SN and supernova remnants is a reliable way to infer the progenitor masses.

Funder

NASA

Space Telescope Science Institute

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3