Unravelling the secrets of blazar OT 081: a multiwavelength investigation

Author:

Deng Junhao12,Jiang Yunguo12ORCID

Affiliation:

1. Shandong Provincial Key Laboratory of Optical Astronomy and Solar-Terrestrial Environment, Institute of Space Sciences, Shandong University , Weihai 264209, China

2. School of Space Science and Physics, Shandong University , Weihai 264209, China

Abstract

ABSTRACTOT 081 is a low-synchrotron-peaked (LSP) frequency blazar target, and has strong emission in the γ-ray band. In July 2016, a significant short-term flare was observed in the optical, X-ray and γ-ray bands. In addition, a long-term orphan flare was observed in the X-ray band from 2009 to 2012. Using the multiwavelength data, we investigate the origin of these two flares and the emission mechanism of γ-ray photons. According to the correlation analysis, we suggest that both flares may have originated from the formation of the new dissipation zones within the jet rather than the change of Doppler factor. The 2016 short-term flare happens on small-scale dissipation zone, while the long-term X-ray flare originates from large scale dissipation zone. Furthermore, we study the spectral energy distribution (SED) to investigate whether the broad-line region (BLR) and the dust torus can provide enough external photons to explain the γ-ray emission of the 2016 flare within the leptonic scenario. We find that the 2016 flare can be explained when the scale of the newly formed dissipation zone is comparable to that of BLR. For the 2009–2012 orphan X-ray flare, we suggest that it may be dominated by the synchrotron self-Compton (SSC) process in a newly formed dissipation zone at pc scale, since both the magnetic field and the external soft photon field energy density are small enough at this region. In summary, the emission mechanism of OT 081 could be explained in the leptonic scenario.

Funder

The National Natural Science Foundation of China

Shandong Provincial Natural Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3