On the stability of additional moons orbiting Kepler-1625 b

Author:

Moraes R A1ORCID,Borderes-Motta G2ORCID,Winter O C1ORCID,Monteiro J1ORCID

Affiliation:

1. UNESP, Universidade Estadual Paulista – Grupo de Dinâmica Orbital & Planetologia, Guaratinguetá, CEP 12.516-410, São Paulo, Brazil

2. Bioengineering and Aerospace Engineering Department, Universidad Carlos III de Madrid, Leganés, 28911, Madrid, Spain

Abstract

ABSTRACT Since it was proposed, the exomoon candidate Kepler-1625 b-I has changed the way we see satellite systems. Because of its unusual physical characteristics, many questions about the stability and origin of this candidate have been raised. Currently, we have enough theoretical studies to show that if Kepler-1625 b-I is indeed confirmed, it will be stable. Regarding its origin, previous works indicated that the most likely scenario is capture, although conditions for in situ formation have also been investigated. In this work, we assume that Kepler-1625 b-I is an exomoon and study the possibility of an additional, massive exomoon being stable in the same system. To model this scenario, we perform N-body simulations of a system including the planet, Kepler-1625 b-I, and one extra Earth-like satellite. Based on previous results, the satellites in our system will be exposed to tidal interactions with the planet and to gravitational effects owing to the rotation of the planet. We find that the satellite system around Kepler-1625 b is capable of harbouring two massive satellites. The extra Earth-like satellite can be stable in various locations between the planet and Kepler-1625 b-I, with a preference for regions inside $25\, R_{\rm p}$. Our results suggest that the strong tidal interaction between the planet and the satellites is an important mechanism to ensure the stability of satellites in circular orbits closer to the planet, while the 2:1 mean motion resonance between the Earth-like satellite and Kepler-1625 b-I would provide stability for satellites in wider orbits.

Funder

Brazilian Federal Agency for the Support and Evaluation of Graduate Education

São Paulo Research Foundation

National Council for Scientific and Technological Development

NCC

São Paulo State University

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3