Whistler instabilities from the interplay of electron anisotropies in space plasmas: a quasi-linear approach

Author:

Shaaban S M12ORCID,Lazar M13ORCID

Affiliation:

1. Centre for mathematical Plasma-Astrophysics, KU Leuven, Celestijnenlaan 200B, B-3001 Leuven, Belgium

2. Theoretical Physics Research Group, Physics Department, Faculty of Science, Mansoura University, 35516 Mansoura, Egypt

3. Institut für Theoretische Physik, Lehrstuhl IV: Weltraum- und Astrophysik, Ruhr-Universität Bochum, D-44780 Bochum, Germany

Abstract

ABSTRACT Recent statistical studies of observational data unveil relevant correlations between whistler fluctuations and the anisotropic electron populations present in space plasmas, e.g. solar wind and planetary magnetospheres. Locally, whistlers can be excited by two sources of free energy associated with anisotropic electrons, i.e. temperature anisotropies and beaming populations carrying the heat flux. However, these two sources of free energy and the resulting instabilities are usually studied independently preventing a realistic interpretation of their interplay. This paper presents the results of a parametric quasi-linear study of the whistler instability cumulatively driven by two counter-drifting electron populations and their anisotropic temperatures. By comparison to individual regimes dominated either by beaming population or by temperature anisotropy, in a transitory regime the instability becomes highly conditioned by the effects of both these two sources of free energy. Cumulative effects stimulate the instability and enhance the resulting fluctuations, which interact with electrons and stimulate their diffusion in velocity space, leading to a faster and deeper relaxation of the beaming velocity associated with a core heating in perpendicular direction and a thermalization of the beaming electrons. In particular, the relaxation of temperature anisotropy to quasi-stable states below the thresholds conditions predicted by linear theory may explain the observations showing the accumulation of these states near the isotropy and equipartition of energy.

Funder

German Research Foundation

FWO

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3