Affiliation:
1. School of Physics and Astronomy, Sun Yat-sen University, China
2. Department of Physics, University of Johannesburg, P.O. Box 524, Auckland Park 2006, Zhuhai 519000, South Africa
Abstract
ABSTRACT
Symplectic algorithms are widely used for long-term integration of astrophysical problems. However, this technique can only be easily constructed for separable Hamiltonian, as preserving the phase-space structure. Recently, for inseparable Hamiltonian, the fourth-order extended phase-space explicit symplectic-like methods have been developed by using the Yoshida’s triple product with a mid-point map, where the algorithm is more effective, stable and also more accurate, compared with the sequent permutations of momenta and position coordinates, especially for some chaotic case. However, it has been found that, for the cases such as with chaotic orbits of spinning compact binary or circular restricted three-body system, it may cause secular drift in energy error and even more the computation break down. To solve this problem, we have made further improvement on the mid-point map with a momentum-scaling correction, which turns out to behave more stably in long-term evolution and have smaller energy error than previous methods. In particular, it could obtain a comparable phase-space distance as computing from the eighth-order Runge–Kutta method with the same time-step.
Publisher
Oxford University Press (OUP)
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献