APES: approximate posterior ensemble sampler

Author:

D P Vitenti Sandro1,Barroso Eduardo J1ORCID

Affiliation:

1. Physics Department, Universidade Estadual de Londrina , Campus Universitário, CEP 86057-970, Londrina , Brazil

Abstract

ABSTRACT This paper proposes a novel approach to generate samples from target distributions that are difficult to sample from using Markov chain Monte Carlo (MCMC) methods. Traditional MCMC algorithms often face slow convergence due to the difficulty in finding proposals that suit the problem at hand. To address this issue, the paper introduces the approximate posterior ensemble sampler (APES) algorithm, which employs kernel density estimation and radial basis interpolation to create an adaptive proposal, leading to fast convergence of the chains. The APES algorithm’s scalability to higher dimensions makes it a practical solution for complex problems. The proposed method generates an approximate posterior probability that closely approximates the desired distribution and is easy to sample from, resulting in smaller autocorrelation times and a higher probability of acceptance by the chain. We compare the performance of the APES algorithm with the affine invariance ensemble sampler with the stretch move in various contexts, demonstrating the efficiency of the proposed method. For instance, on the Rosenbrock function, the APES presented an autocorrelation time 140 times smaller than the affine invariance ensemble sampler. The comparison showcases the effectiveness of the APES algorithm in generating samples from challenging distributions. This paper presents a practical solution to generating samples from complex distributions while addressing the challenge of finding suitable proposals. With new cosmological surveys set to deal with many new systematics, this method offers a practical solution for the upcoming era of cosmological analyses. The algorithms presented in this paper are available at https://github.com/NumCosmo/NumCosmo.

Funder

CNPq

CAPES Foundation

FINEP

FAPERJ

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3