Gas-phase spectroscopic characterization of neutral and ionic polycyclic aromatic phosphorus heterocycles (PAPHs)

Author:

Oliveira Ricardo R1ORCID,Molpeceres Germán2ORCID,Fantuzzi Felipe34ORCID,Quitián-Lara Heidy M5ORCID,Boechat-Roberty Heloisa M5ORCID,Kästner Johannes2ORCID

Affiliation:

1. Chemistry Institute, Federal University of Rio de Janeiro, 21941-909, Rio de Janeiro, Brazil

2. Institute for Theoretical Chemistry, University of Stuttgart,70569, Stuttgart, Germany

3. Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, 97074, Würzburg, Germany

4. Institute of Physical and Theoretical Chemistry, Julius-Maximilians-Universität Würzburg,97070, Würzburg, Germany

5. Observatório do Valongo, Federal University of Rio de Janeiro,20080-090, Rio de Janeiro, Brazil

Abstract

ABSTRACT Polycyclic aromatic hydrocarbons (PAHs) constitute an essential family of compounds in interstellar (ISM) and circumstellar (CSM) media. Recently, formation routes for the corresponding polycyclic aromatic phosphorus heterocycles (PAPHs) in astrophysical environments have been proposed. In order to contribute to a better understanding of the phosphorus chemistry in the ISM, infrared (IR) spectra and selected properties of PAPHs were computed at the density functional theory level for neutral, cationic, and anionic species. Our results reveal that several protonated PAPHs do not have planar backbones, and all species have permanent dipole moments between 2D and 4D. Closed-shell PAPHs have similar ionization potentials compared to the parent PAHs, below the Lyman threshold limit. In addition, all PAPHs show positive electron affinities higher than those of PAHs. Protonation preferably occurs on the heteroatom but with lower proton affinities than those of the corresponding nitrogen analogues (polycyclic aromatic nitrogen heterocycles). In general, neutral species have similar IR spectra profile with the most intense bands around 800 cm−1 (12.5 μm) related to C−H wagging. Charge and protonation affect the IR spectra mainly by decreasing the intensities of these modes and increasing the ones between 1000 (10.0 μm) and 1800 cm−1 (5.6 μm). The P−H stretching appears in a different spectral region, between 2300 (4.3 μm) and 2700 cm−1 (3.7 μm). Our results are discussed in the context of distinct sources where PAHs and phosphorus are detected. PAPHs, in particular the coronene derivatives, can contribute to the unidentified infrared emission band at 6.2 μm.

Funder

CAPES

Alexander von Humboldt Foundation

Horizon 2020

DFG

National Aeronautics and Space Administration

California Institute of Technology

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3