Aperture shapes and the effectiveness of ground-based large and extremely large telescopes

Author:

Hakobyan Armen V1

Affiliation:

1. Byurakan Astrophysical Observatory, Byurakan 0213, Aragatzotn Province, Armenia

Abstract

ABSTRACT Aperture shapes in modern large and forthcoming extremely large telescopes (ELTs), with effective light-gathering sizes more than D ∼ 10 m, differ significantly from the desirable circular one. They deliver specific point spread functions, which may also differ notably from that of the fine structure of the classical Airy pattern. The optical power of such a telescope can be changed notably compared with a circular aperture with the same area. The presence of atmospheric optical turbulence complicates the effect additionally and makes it seeing- and wavelength-dependent. So, what is the impact of a non-circular pupil on telescope exploitation? It concerns the efficiency, which is an important point, especially for instruments of such a class. In this research an attempt is made to assess the values of these changes in the context of the Keck, HDRT, GMT, TMT and ELT telescopes. Relative performance characteristics (integral contrast and signal-to-noise ratio, S/N) of the telescopes, working in the seeing-limited regime, under a range of plausible turbulence conditions, for a wide (from UV to mid-IR) spectral region are obtained. The partial role of central obscuration is assessed. The effect of adaptive optics implementation in this context is also analysed. It is shown that, for instance, maximal S/N degradation due to the non-circularity of the pupil shape can be as much as $\sim 6~{{\ \rm per\ cent}}$ (TMT) to $30~{{\ \rm per\ cent}}$ (HDRT), depending on the telescope and observational mode. The numbers are comparable with or may even substantially exceed the losses that could be caused by the other parameters (e.g. residual wave-front error, optical transmittance) relevant to the quality of the optical system.

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3