Affiliation:
1. Centre for Theoretical Studies, Indian Institute of Technology Kharagpur, Kharagpur – 721302, India
2. Department of Physics, Indian Institute of Technology Kharagpur, Kharagpur – 721302, India
Abstract
ABSTRACT
The anisotropy of the redshift space bispectrum contains a wealth of cosmological information. This anisotropy depends on the orientation of three vectors $\boldsymbol {k_1},\boldsymbol {k_2},\boldsymbol {k_3}$ with respect to the line of sight. Here, we have decomposed the redshift space bispectrum in spherical harmonics which completely quantify this anisotropy. To illustrate this, we consider linear redshift space distortion of the bispectrum arising from primordial non-Gaussianity. In the plane-parallel approximation, only the first four even ℓ multipoles have non-zero values, and we present explicit analytical expressions for all the non-zero multipoles, that is, upto ℓ = 6 and m = 4. The ratio of the different multipole moments to the real-space bispectrum depends only on β1 the linear redshift distortion parameter and the shape of the triangle. Considering triangles of all possible shapes, we have studied how this ratio depends on the shape of the triangle for β1 = 1. We have also studied the β1 dependence for some of the extreme triangle shapes. If measured in future, these multipole moments hold the potential of constraining β1. The results presented here are also important if one wishes to constrain fNL using redshift surveys.
Publisher
Oxford University Press (OUP)
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献