Newton versus the machine: solving the chaotic three-body problem using deep neural networks

Author:

Breen Philip G12,Foley Christopher N3,Boekholt Tjarda4,Zwart Simon Portegies5

Affiliation:

1. School of Mathematics and Maxwell Institute for Mathematical Sciences, University of Edinburgh, Kings Buildings, Edinburgh EH9 3JZ, UK

2. Roar AI, 3rd Floor, 116 Dundas Street, Edinburgh EH3 5DQ, UK

3. School of Clinical Medicine, University of Cambridge, Cambridge, CB2 0SP, UK

4. CIDMA, Departamento de Física, Universidade de Aveiro, Campus de Santiago, P-3810-193 Aveiro, Portugal

5. Leiden Observatory, Leiden University, PO Box 9513, NL-2300 RA Leiden, the Netherlands

Abstract

ABSTRACT Since its formulation by Sir Isaac Newton, the problem of solving the equations of motion for three bodies under their own gravitational force has remained practically unsolved. Currently, the solution for a given initialization can only be found by performing laborious iterative calculations that have unpredictable and potentially infinite computational cost, due to the system’s chaotic nature. We show that an ensemble of converged solutions for the planar chaotic three-body problem obtained using an arbitrarily precise numerical integrator can be used to train a deep artificial neural network (ANN) that, over a bounded time interval, provides accurate solutions at a fixed computational cost and up to 100 million times faster than the numerical integrator. In addition, we demonstrate the importance of training an ANN using converged solutions from an arbitrary precise integrator, relative to solutions computed by a conventional fixed precision integrator, which can introduce errors in the training data, due to numerical round-off and time discretization, that are learned by the ANN. Our results provide evidence that, for computationally challenging regions of phase space, a trained ANN can replace existing numerical solvers, enabling fast and scalable simulations of many-body systems to shed light on outstanding phenomena such as the formation of black hole binary systems or the origin of the core collapse in dense star clusters.

Funder

Leverhulme Trust

Fundação para a Ciência e a Tecnologia

Fuel Cell Technologies Program

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3