Affiliation:
1. Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
2. Center for Space and Habitability, University of Bern, Gesellschaftsstrasse 6, CH-3012 Bern, Switzerland
Abstract
ABSTRACT
The Palomar Fiber Nuller (PFN) is a rotating-baseline nulling interferometer that enables high-accuracy near-infrared (NIR) nulling observations with full azimuth coverage. To achieve NIR null-depth accuracies of several x 10−4, the PFN uses a common-mode optical system to provide a high degree of symmetry, single-mode-fibre beam combination to reduce sensitivity to pointing and wavefront errors, extreme adaptive optics to stabilize the fibre coupling and the cross-aperture fringe phase, rapid signal calibration and camera readout to minimize temporal effects, and a statistical null-depth fluctuation analysis to relax the phase stabilization requirement. Here, we describe the PFN’s final design and performance and provide a demonstration of faint-companion detection by means of nulling-baseline rotation, as originally envisioned for space-based nulling interferometry. Specifically, the Ks-band null-depth rotation curve measured on the spectroscopic binary η Peg reflects both a secondary star 1.08 ± 0.06 × 10−2 as bright as the primary, and a null-depth contribution of 4.8 ± 1.6 × 10−4 due to the size of the primary star. With a 30 mas separation at the time, η Peg B was well inside both the telescope’s diffraction-limited beam diameter (88 mas) and typical coronagraphic inner working angles. Finally, we discuss potential improvements that can enable a number of small-angle nulling observations on larger telescopes.
Funder
Jet Propulsion Laboratory
California Institute of Technology
National Aeronautics and Space Administration
Publisher
Oxford University Press (OUP)
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献