Affiliation:
1. Max-Planck-Instutut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn, Germany
2. Argelander Institut für Astronomie, Auf dem Hügel 71, D-53121 Bonn, Germany
3. Department of Physics, Institute of Astrophysics, FORTH, University Campus, GR-71003 Heraklion, Greece
Abstract
ABSTRACT
While the majority of massive stars have a stellar companion, most pulsars appear to be isolated. Taken at face value, this suggests that most massive binaries break apart due to strong natal kicks received in supernova explosions. However, the observed binary fraction can still be subject to strong selection effects, as monitoring of newly discovered pulsars is rarely carried out for long enough to conclusively rule out multiplicity. Here, we use the second Gaia data release to search for companions to 1534 rotation-powered pulsars with positions known to better than 0.5 arcsec. We find 22 matches to known pulsars, including 1 not reported elsewhere, and 8 new possible companions to young pulsars. We examine the photometric and kinematic properties of these systems and provide empirical relations for identifying Gaia sources with potential millisecond pulsar companions. Our results confirm that the observed multiplicity fraction is small. However, we show that the number of binaries below the sensitivity of Gaia and radio timing in our sample could still be significantly higher. We constrain the binary fraction of young pulsars to be $f_{\rm young}^{\rm true}\le 5.3(8.3){{\ \rm per\ cent}}$ under realistic (conservative) assumptions for the binary properties and current sensitivity thresholds. For massive stars (≥10 M⊙) in particular, we find $f_{\rm OB}^{\rm true}\le 3.7{{\ \rm per\ cent}}$, which sets a firm independent upper limit on the Galactic neutron star merger rate, ≤7.2 × 10−4 yr−1. Ongoing and future projects, such as the CHIME/pulsar program, MeerTime, HIRAX, and ultimately the SKA, will significantly improve these constraints in the future.
Funder
Hellenic Foundation for Research and Innovation
Stavros Niarchos Foundation
European Space Agency
Publisher
Oxford University Press (OUP)
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献