Chemical evolution of local post-starburst galaxies: implications for the mass–metallicity relation

Author:

Leung Ho-Hin1ORCID,Wild Vivienne1ORCID,Papathomas Michail2,Carnall Adam3ORCID,Zheng Yirui14ORCID,Boardman Nicholas1,Wang Cara1,Johansson Peter H5ORCID

Affiliation:

1. SUPA, School of Physics & Astronomy, University of St Andrews , North Haugh, St Andrews, Fife KY16 9SS , UK

2. School of Mathematics and Statistics, University of St Andrews , North Haugh, St Andrews, Fife KY16 9SS , UK

3. SUPA Institute for Astronomy, University of Edinburgh , Royal Observatory, Edinburgh EH9 3HJ , UK

4. Department of Astronomy, School of Physics and Astronomy, Shanghai Jiao Tong University , Shanghai, 200240 , PR China

5. Department of Physics, University of Helsinki , Gustaf Hällströmin katu 2, FI-00014 Helsinki , Finland

Abstract

ABSTRACT We use the stellar fossil record to constrain the stellar metallicity evolution and star-formation histories of the post-starburst (PSB) regions within 45 local PSB galaxies from the MaNGA survey. The direct measurement of the regions’ stellar metallicity evolution is achieved by a new two-step metallicity model that allows for stellar metallicity to change at the peak of the starburst. We also employ a Gaussian process noise model that accounts for correlated errors introduced by the observational data reduction or inaccuracies in the models. We find that a majority of PSB regions (69 per cent at >1σ significance) increased in stellar metallicity during the recent starburst, with an average increase of 0.8 dex and a standard deviation of 0.4 dex. A much smaller fraction of PSBs are found to have remained constant (22 per cent) or declined in metallicity (9 per cent, average decrease 0.4 dex, standard deviation 0.3 dex). The pre-burst metallicities of the PSB galaxies are in good agreement with the mass–metallicity (MZ) relation of local star-forming galaxies. These results are consistent with hydrodynamic simulations, which suggest that mergers between gas-rich galaxies are the primary formation mechanism of local PSBs, and rapid metal recycling during the starburst outweighs the impact of dilution by any gas inflows. The final mass-weighted metallicities of the PSB galaxies are consistent with the MZ relation of local passive galaxies. Our results suggest that rapid quenching following a merger-driven starburst is entirely consistent with the observed gap between the stellar mass–metallicity relations of local star-forming and passive galaxies.

Funder

STFC

European Research Council

Alfred P. Sloan Foundation

U.S. Department of Energy Office of Science

Publisher

Oxford University Press (OUP)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3