The magnetic field in the dense photodissociation region of DR 21

Author:

Koley Atanu12,Roy Nirupam2,Menten Karl M3,Jacob Arshia M3,Pillai Thushara G S34,Rugel Michael R3

Affiliation:

1. Joint Astronomy Programme, Indian Institute of Science, Bangalore 560012, Karnataka, India

2. Department of Physics, Indian Institute of Science, Bangalore 560012, Karnataka, India

3. Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn, Germany

4. Institute for Astrophysical Research, Boston University, Boston, MA 02215, USA

Abstract

ABSTRACT Measuring interstellar magnetic fields is extremely important for understanding their role in different evolutionary stages of interstellar clouds and star formation. However, detecting the weak field is observationally challenging. We present measurements of the Zeeman effect in the 1665 and 1667 MHz (18 cm) lines of the hydroxyl radical (OH) lines towards the dense photodissociation region (PDR) associated with the compact H ii region DR 21 (Main). From the OH 18 cm absorption, observed with the Karl G. Jansky Very Large Array, we find that the line-of-sight magnetic field in this region is ∼0.13 mG. The same transitions in maser emission towards the neighbouring DR 21(OH) and W 75S-FR1 regions also exhibit the Zeeman splitting. Along with the OH data, we use [C ii] 158 μm line and hydrogen radio recombination line data to constrain the physical conditions and the kinematics of the region. We find the OH column density to be ∼3.6 × 1016(Tex/25 K) cm−2, and that the 1665 and 1667 MHz absorption lines are originating from the gas where OH and C+ are co-existing in the PDR. Under reasonable assumptions, we find the measured magnetic field strength for the PDR to be lower than the value expected from the commonly discussed density–magnetic field relation while the field strength values estimated from the maser emission are roughly consistent with the same. Finally, we compare the magnetic field energy density with the overall energetics of DR 21’s PDR and find that, in its current evolutionary stage, the magnetic field is not dynamically important.

Funder

Department of Science and Technology, Government of West Bengal

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3