Characterizing the dynamo in a radiatively inefficient accretion flow

Author:

Dhang Prasun123ORCID,Bendre Abhijit4ORCID,Sharma Prateek1ORCID,Subramanian Kandaswamy4

Affiliation:

1. Department of Physics and Joint Astronomy Programme, Indian Institute of Science, Bangalore, Karnataka 560012, India

2. Institute for Advanced Study, Tsinghua University, Beijing 100084, China

3. Department of Astronomy, Tsinghua University, Beijing 100084, China

4. IUCAA, Post Bag 4, Ganeshkhind, Pune, Maharashtra 411007, India

Abstract

ABSTRACT We explore the magneto-rotational instability (MRI)-driven dynamo in a radiatively inefficient accretion flow (RIAF) using the mean field dynamo paradigm. Using singular value decomposition (SVD) we obtain the least-squares fitting dynamo coefficients α and γ by comparing the time series of the turbulent electromotive force and the mean magnetic field. Our study is the first one to show the poloidal distribution of these dynamo coefficients in global accretion flow simulations. Surprisingly, we obtain a high value of the turbulent pumping coefficient γ, which transports the mean magnetic flux radially outwards. This would have implications for the launching of magnetized jets that are produced efficiently in presence a large-scale poloidal magnetic field close to the compact object. We present a scenario of a truncated disc beyond the RIAF where a large-scale dynamo-generated poloidal magnetic field can aid jet launching close to the black hole. Magnitude of all the calculated coefficients decreases with radius. Meridional variations of αϕϕ, responsible for toroidal to poloidal field conversion, is very similar to that found in shearing box simulations using the ‘test field’ (TF) method. By estimating the relative importance of α-effect and shear, we conclude that the MRI-driven large-scale dynamo, which operates at high latitudes beyond a disc scale height, is essentially of the α − Ω type.

Funder

Department of Science and Technology, Government of Kerala

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3