Affiliation:
1. Department of Physics, University of Surrey, Guildford GU2 7XH, UK
Abstract
ABSTRACT
We introduce a novel abundance matching technique that produces a more accurate estimate of the pre-infall halo mass, M200, for satellite galaxies. To achieve this, we abundance match with the mean star formation rate, averaged over the time when a galaxy was forming stars, 〈SFR〉, instead of the stellar mass, M∗. Using data from the Sloan Digital Sky Survey, the GAMA survey and the Bolshoi simulation, we obtain a statistical 〈SFR〉−M200 relation in Λ cold dark matter. We then compare the pre-infall halo mass, $M^{\rm abund}_{200}$, derived from this relation with the pre-infall dynamical mass, $M^{\rm dyn}_{200}$, for 21 nearby dSph and dIrr galaxies, finding a good agreement between the two. As a first application, we use our new 〈SFR〉−M200 relation to empirically measure the cumulative mass function of a volume-complete sample of bright Milky Way satellites within 280 kpc of the Galactic centre. Comparing this with a suite of cosmological ‘zoom’ simulations of Milky Way-mass haloes that account for subhalo depletion by the Milky Way disc, we find no missing satellites problem above M200 ∼ 109 M⊙ in the Milky Way. We discuss how this empirical method can be applied to a larger sample of nearby spiral galaxies.
Funder
Kavli Institute for Theoretical Physics, University of California, Santa Barbara
Science and Technology Facilities Council
National Science Foundation
Publisher
Oxford University Press (OUP)
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
56 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献