The study of 11 contact binaries with mass ratios less than 0.1

Author:

Liu Xin-Yi1,Li Kai1ORCID,Michel Raul2,Gao Xiang1,Gao Xing3,Liu Fei1,Yin Shi-Peng1,Wang Xi1,Sun Guo-You4ORCID

Affiliation:

1. Shandong Key Laboratory of Optical Astronomy and Solar-Terrestrial Environment, School of Space Science and Physics, Institute of Space Sciences, Shandong University , Weihai, Shandong 264209, China

2. Observatorio Astronómico Nacional, Instituto de Astronomía, Universidad Nacional Autónoma de México , Apartado Postal 877, Ensenada, B.C. 22830, México

3. Xinjiang Astronomical Observatory , 150 Science 1-Street, Urumqi 830011, China

4. Wenzhou Astronomical Association , Beibaixiang Town, Yueqing, Zhejiang, 325603, China

Abstract

ABSTRACT Multi-band photometric observations of 11 totally eclipsing contact binaries were carried out. Applying the Wilson–Devinney program, photometric solutions were obtained. There are two W-subtype systems, which are CRTS J133031.1+161202 and CRTS J154254.0+324652, and the rest of the systems are A-subtype systems. CRTS J154254.0 + 324652 has the highest fill-out factor with 94.3 per cent, and the lowest object is CRTS J155009.2 + 493639 with only 18.9 per cent. The mass ratios of the 11 systems are all less than 0.1, which means that they are extremely low-mass ratio binary systems. We performed period variation investigation and found that the orbital periods of three systems decrease slowly, which may be caused by the materials may transfer from the primary component to the secondary component, and those of six systems increase slowly, which indicates that the materials may transfer from the secondary component to the primary component. LAMOST low-resolution spectra of four objects were analysed, and using the spectral subtraction technique, Hα emission line was detected, which means that the four objects exhibit chromospheric activity. In order to understand their evolutionary status, the mass–luminosity and mass–radius diagrams were plotted. The two diagrams indicate that the primary component is in the main sequence evolution stage, and the secondary component is above TAMS, indicating that they are over-luminous. To determine whether the 11 systems are in a stable state, the ratio of spin angular momentum to orbital angular momentum (Js/Jo) and the instability parameters were calculated, and we argued that CRTS J234634.7 + 222824 is on the verge of a merger.

Funder

National Natural Science Foundation of China

Chinese Academy of Sciences

Natural Science Foundation of Shandong Province

Shandong University

National Development and Reform Commission

NASA

Gordon and Betty Moore Foundation

Ohio State University

Alfred P. Sloan Foundation

National Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3