Residual neural networks for the prediction of planetary collision outcomes

Author:

Winter Philip M1,Burger Christoph1,Lehner Sebastian2,Kofler Johannes2,Maindl Thomas I34,Schäfer Christoph M1ORCID

Affiliation:

1. Institut für Astronomie und Astrophysik, Eberhard Karls Universität Tübingen , Auf der Morgenstelle 10, D-72076 Tübingen, Germany

2. Johannes Kepler University Linz , Altenberger Straße 69, A-4040 Linz, Austria

3. SDB Science-driven Business Ltd , 85 Faneromenis Avenue, Ria Court 46, Suite 301, 6025 Larnaca, Cyprus

4. Department of Astrophysics, University of Vienna , Türkenschanzstraße 17, A-1180 Vienna, Austria

Abstract

ABSTRACT Fast and accurate treatment of collisions in the context of modern N-body planet formation simulations remains a challenging task due to inherently complex collision processes. We aim to tackle this problem with machine learning (ML), in particular via residual neural networks. Our model is motivated by the underlying physical processes of the data-generating process and allows for flexible prediction of post-collision states. We demonstrate that our model outperforms commonly used collision handling methods such as perfect inelastic merging and feed-forward neural networks in both prediction accuracy and out-of-distribution generalization. Our model outperforms the current state of the art in 20/24 experiments. We provide a data set that consists of 10164 Smooth Particle Hydrodynamics (SPH) simulations of pairwise planetary collisions. The data set is specifically suited for ML research to improve computational aspects for collision treatment and for studying planetary collisions in general. We formulate the ML task as a multi-task regression problem, allowing simple, yet efficient training of ML models for collision treatment in an end-to-end manner. Our models can be easily integrated into existing N-body frameworks and can be used within our chosen parameter space of initial conditions, i.e. where similar-sized collisions during late-stage terrestrial planet formation typically occur.

Funder

German Research Foundation

Austrian Science Fund

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3