Magnetic inhibition of centrifugal instability

Author:

Komissarov Serguei S1ORCID,Gourgouliatos Konstantinos N2ORCID,Matsumoto Jin13ORCID

Affiliation:

1. Department of Applied Mathematics, University of Leeds, Leeds LS2 9JT, UK

2. Department of Mathematical Sciences, Durham University, Durham DH1 3LE, UK

3. Research Institute of Stellar Explosive Phenomena, Fukuoka University, Fukuoka 814-0180, Japan

Abstract

ABSTRACT Recently, it was shown that the centrifugal instability may be important in the dynamics of astrophysical jets undergoing reconfinement by external pressure. However, these studies were limited to the case of unmagnetized flows. Here, we explore the role of the magnetic field within both the Newtonian and relativistic frameworks. Since the jet problem is rather complicated, we focus instead on the simpler problem of cylindrical rotation and axial magnetic field, which shares significant similarity with the jet problem, and consider only axisymmetric perturbations. The studied equilibrium configurations involve a cylindrical interface and they are stable to non-magnetic centrifugal and magnetorotational instabilities everywhere except this interface. We use a heuristic approach to derive the local stability criterion for the interface in the magnetic case and numerical simulations to verify the role of the magnetic field. The theory and simulations agree quite well for Newtonian models but indicate a potential discrepancy for the relativistic models in the limit of high Lorentz factor of the rotational motion at the interface. In general, the magnetic field sets a critical wavelength below which the centrifugal modes are stabilized. We discuss the implication of our findings for the astrophysical jets, which suggest that the centrifugal instability develops only in jets with relatively low magnetization. Namely, the magnetic pressure has to be below the thermal one and for the relativistic case the jets have to be kinetic-energy dominated.

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Simulations of two-temperature jets in galaxy clusters;Astronomy & Astrophysics;2023-11

2. Extreme blazars: the result of unstable recollimated jets?;Monthly Notices of the Royal Astronomical Society: Letters;2022-07-27

3. Numerical simulations of jets;New Astronomy Reviews;2021-06

4. Magnetic inhibition of the recollimation instability in relativistic jets;Monthly Notices of the Royal Astronomical Society;2021-03-22

5. Blazar jets launched with similar energy per baryon, independently of their power;Monthly Notices of the Royal Astronomical Society;2020-12-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3