Affiliation:
1. Universidad Complutense de Madrid, Ciudad Universitaria, E-28040 Madrid, Spain
2. AEGORA Research Group, Facultad de Ciencias Matemáticas, Universidad Complutense de Madrid, Ciudad Universitaria, E-28040 Madrid, Spain
Abstract
ABSTRACT
Orbiting the Sun at an average distance of 0.59 au and with the shortest aphelion of any known minor body, at 0.77 au, the Atira-class asteroid 2019 AQ3 may be an orbital outlier or perhaps an early indication of the presence of a new population of objects: those following orbits entirely encompassed within that of Venus, the so-called Vatiras. Here, we explore the orbital evolution of 2019 AQ3 within the context of the known Atiras to show that, like many of them, it displays a present-day conspicuous coupled oscillation of the values of eccentricity and inclination, but no libration of the value of the argument of perihelion with respect to the invariable plane of the Solar system. The observed dynamics is consistent with being the result of the combined action of two dominant perturbers, the Earth–Moon system and Jupiter, and a secondary one, Venus. Such a multiperturber-induced secular dynamics translates into a chaotic evolution that can eventually lead to a resonant behaviour of the Lidov–Kozai type. Asteroid 2019 AQ3 may have experienced brief stints as a Vatira in the relatively recent past and it may become a true Vatira in the future, outlining possible dynamical pathways that may transform Atiras into Vatiras and vice versa. Our results strongly suggest that 2019 AQ3 is only the tip of the iceberg: a likely numerous population of similar bodies may remain hidden in plain sight, permanently confined inside the Sun’s glare.
Funder
Ministerio de Economía y Competitividad
National Aeronautics and Space Administration
Publisher
Oxford University Press (OUP)
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献