Relativistic ocean r-modes during type-I X-ray bursts

Author:

Chambers F R N1ORCID,Watts A L1ORCID

Affiliation:

1. Anton Pannekoek Institute for Astronomy, University of Amsterdam, Postbus 94249, NL-1090 GE Amsterdam, the Netherlands

Abstract

ABSTRACT Accreting neutron stars (NS) can exhibit high frequency modulations in their lightcurves during thermonuclear X-ray bursts, known as burst oscillations. These frequencies can be offset from the NS spin frequency by several Hz (where known independently) and can drift by 1–3 Hz. One plausible explanation is that a wave is present in the bursting ocean, the rotating frame frequency of which is the offset. The frequency of the wave should decrease (in the rotating frame) as the burst cools hence explaining the drift. A strong candidate is a buoyant r-mode. To date, models that calculated the frequency of this mode taking into account the radial structure neglected relativistic effects and predicted rotating frame frequencies of ∼4 Hz and frequency drifts of >5 Hz; too large to be consistent with observations. We present a calculation that includes frame-dragging and gravitational redshift that reduces the rotating frame frequency by up to $30 \, {\rm per\, cent}$ and frequency drift by up to $20 \, {\rm per\, cent}$. Updating previous models for the ocean cooling in the aftermath of the burst to a model more representative of detailed calculations of thermonuclear X-ray bursts reduces the frequency of the mode still further. This model, combined with relativistic effects, can reduce the rotating frequency of the mode to ∼2 Hz and frequency drift to ∼2 Hz, which is closer to the observed values.

Funder

European Research Council

National Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3