Compact groups from semi-analytical models of galaxy formation – II. Different assembly channels

Author:

Díaz-Giménez E12ORCID,Zandivarez A12ORCID,Mamon G A3ORCID

Affiliation:

1. Universidad Nacional de Córdoba (UNC). Observatorio Astronómico de Córdoba (OAC), Córdoba, X5000BGR, Argentina

2. CONICET. Instituto de Astronomía Teórica y Experimental (IATE), Córdoba, X5000BGR, Argentina

3. Institut d’Astrophysique de Paris (UMR 7095: CNRS & Sorbonne Université), Paris, 75014, France

Abstract

ABSTRACT We study the formation of over 6000 compact groups (CGs) of galaxies identified in mock redshift-space galaxy catalogues built from semi-analytical models of galaxy formation (SAMs) run on the Millennium Simulations. We select CGs of four members in our mock SDSS galaxy catalogues and, for each CG, we trace back in time the real-space positions of the most massive progenitors of their four galaxies. By analysing the evolution of the distance of the galaxy members to the centre of mass of the group, we identify four channels of CG formation. The classification of these assembly channels is performed with an automatic recipe inferred from a preliminary visual inspection and based on the orbit of the galaxy with the fewest number of orbits. Most CGs show late assembly, with the last galaxy arriving on its first or second passage, while only 10–20 per cent form by the gradual contraction of their orbits by dynamical friction, and only a few per cent forming early with little subsequent contraction. However, a SAM from a higher resolution simulation leads to earlier assembly. Assembly histories of CGs also depend on cosmological parameters. At similar resolution, CGs assemble later in SAMs built on parent cosmological simulations of high density parameter. Several observed properties of mock CGs correlate with their assembly history: early-assembling CGs are smaller, with shorter crossing times, and greater magnitude gaps between their brightest two members, and their brightest galaxies have smaller spatial offsets and are more passive.

Funder

CONICET

SeCyT

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3