On the spin-up events and spin direction of the X-ray pulsar GX 301-2

Author:

Liu Jiren12

Affiliation:

1. National Astronomical Observatories, 20A Datun Road, Beijing 100012, China

2. Beijing Planetarium, 138 Xizhimenwai Road, Beijing 100044, China

Abstract

ABSTRACT Recently, a retrograde neutron star is proposed for the classical wind-fed X-ray pulsar, GX 301-2, to explain the orbital spin-up to spin-down reversal near periastron, based on the stream model invoked to explain the pre-periastron flare of GX 301-2 previously. We study in detail three rare spin-up events detected by Fermi/GBM and find that the spin derivatives are correlated with the Swift/BAT fluxes, following a relation of $\dot{\nu }\propto F^{0.75\pm 0.05}$. All the spin-up events of GX 301-2 started about 10 d after the periastron, which is the time needed for tidally stripped gas to reach the neutron star. The slow rotation of the optical companion implies that the accreted matter is likely to have angular momentum in the direction of the orbital motion, as in a Roche lobe-like overflow. As a result, the spin-up events of GX 301-2 would favour accretion of a prograde disc to a prograde neutron star. We also find that the flare of intrinsic X-ray emission of GX 301-2 happened 0.4 d before periastron, while the flare of low-energy emission (2–10 keV) happened about 1.4 d before periastron. The preceding low-energy flare can be explained by stronger absorption of the intrinsic X-ray emission closer to the periastron. This finding weakened the need of the stream model. The pulse fraction of GX 301-2 near periastron is reduced heavily, which is likely caused by Compton-scattering process. Compton reflection from the optical companion might be responsible for the observed orbital spin reversal of GX 301-2.

Funder

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Investigating the orbital evolution of the eccentric HMXB GX 301–2 using long-term X-ray light curves;Monthly Notices of the Royal Astronomical Society;2023-10-10

2. Evolution of eccentric high-mass X-ray binaries;Astronomy & Astrophysics;2023-02

3. Changes in the distribution of circum-binary material around the HMXB GX 301-2 during a rapid spin-up episode of the neutron star;Monthly Notices of the Royal Astronomical Society;2023-01-09

4. Torque reversal and orbital profile of X-ray pulsar OAO 1657−415;Monthly Notices of the Royal Astronomical Society;2021-12-08

5. Disc versus wind accretion in X-ray pulsar GX 301-2;Monthly Notices of the Royal Astronomical Society;2021-04-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3